Various changes made while offline.

 + bwrite sector argument is redundant; use b->sector.
 + reformatting of files for nicer PDF page breaks
 + distinguish between locked, unlocked inodes in type signatures
 + change FD_FILE to FD_INODE
 + move userinit (nee proc0init) to proc.c
 + move ROOTDEV to param.h
 + always parenthesize sizeof argument
This commit is contained in:
rsc 2007-08-22 06:01:32 +00:00
parent 3dcf889c1b
commit eaea18cb9c
25 changed files with 637 additions and 669 deletions

46
BUGS
View file

@ -4,47 +4,11 @@ proc.c:
and be able to break out with an error return.
it is better if you check *before* sleep.
can swap procdump up after proc_kill
and then have proc_exit and proc_wait on same sheet
sched -> switch2scheduler? or just switch?
factor out switching and scheduling code from process code
shuffle for formatting
syscall.c:
cannot convince runoff1 to split the extern lists to fill previous page completely.
cannot convince runoff1 to split the extern lists
to fill previous page completely.
fs.c: split all name operations off in name.c? (starting with namei but
wdir keep in fs.c)
locking?
shuffle for formatting
pipe.c:
more comments?
comment how functions get called?
sysfile.c:
is the sys_exec picture upside down?
can sys_open and sys_exec be simplified any?
general:
sizeof parens?
bio.c:
decide odd or even
bwrite doesn't need a second argument
file.c:
move fileincref onto page 1?
L=$HOME/mit/l
(for i in *.c; do xoc -x xgnu -x ./nodecleq.zeta --typesonly $i; done) 2>&1 | grep warning
saw random sharedfd failure.
why does fdalloc consume reference?
why mkdir and create?
formatting:
file.c filewrite leaks onto next page
need to fix PAGEBREAK mechanism

5
bio.c
View file

@ -117,12 +117,11 @@ bread(uint dev, uint sector)
// Write buf's contents to disk.
// Must be locked.
void
bwrite(struct buf *b, uint sector)
bwrite(struct buf *b)
{
if((b->flags & B_BUSY) == 0)
panic("bwrite");
ide_rw(b->dev & 0xff, sector, b->data, 1, 0);
ide_rw(b->dev & 0xff, b->sector, b->data, 1, 0);
b->flags |= B_VALID;
}

View file

@ -25,6 +25,7 @@
// * cmain() in this file takes over,
// reads in the kernel and jumps to it.
//PAGEBREAK!
#include "types.h"
#include "elf.h"
#include "x86.h"
@ -32,7 +33,6 @@
#define SECTSIZE 512
#define ELFHDR ((struct elfhdr*) 0x10000) // scratch space
void readsect(void*, uint);
void readseg(uint, uint, uint);
void
@ -64,8 +64,37 @@ bad:
;
}
void
waitdisk(void)
{
// wait for disk reaady
while((inb(0x1F7) & 0xC0) != 0x40)
;
}
// Read a single sector at offset into dst.
void
readsect(void *dst, uint offset)
{
// wait for disk to be ready
waitdisk();
outb(0x1F2, 1); // count = 1
outb(0x1F3, offset);
outb(0x1F4, offset >> 8);
outb(0x1F5, offset >> 16);
outb(0x1F6, (offset >> 24) | 0xE0);
outb(0x1F7, 0x20); // cmd 0x20 - read sectors
// wait for disk to be ready
waitdisk();
// read a sector
insl(0x1F0, dst, SECTSIZE/4);
}
// Read 'count' bytes at 'offset' from kernel into virtual address 'va'.
// Might copy more than asked
// Might copy more than asked.
void
readseg(uint va, uint count, uint offset)
{
@ -90,31 +119,3 @@ readseg(uint va, uint count, uint offset)
}
}
void
waitdisk(void)
{
// wait for disk reaady
while((inb(0x1F7) & 0xC0) != 0x40)
;
}
void
readsect(void *dst, uint offset)
{
// wait for disk to be ready
waitdisk();
outb(0x1F2, 1); // count = 1
outb(0x1F3, offset);
outb(0x1F4, offset >> 8);
outb(0x1F5, offset >> 16);
outb(0x1F6, (offset >> 24) | 0xE0);
outb(0x1F7, 0x20); // cmd 0x20 - read sectors
// wait for disk to be ready
waitdisk();
// read a sector
insl(0x1F0, dst, SECTSIZE/4);
}

28
defs.h
View file

@ -24,6 +24,7 @@ int proc_kill(int);
int proc_wait(void);
void yield(void);
void procdump(void);
void userinit(void);
// setjmp.S
struct jmpbuf;
@ -117,30 +118,31 @@ void ide_rw(int, uint, void*, uint, int);
void binit(void);
struct buf;
struct buf* bread(uint, uint);
void bwrite(struct buf*, uint);
void bwrite(struct buf*);
void brelse(struct buf*);
// fs.c
struct inode;
struct uinode;
void iinit(void);
void ilock(struct inode*);
void iunlock(struct inode*);
void idecref(struct inode*);
struct inode* iincref(struct inode*);
void iput(struct inode*);
struct inode* namei(char*);
struct inode* ilock(struct uinode*);
struct uinode* iunlock(struct inode*);
void iput(struct uinode*);
struct uinode* idup(struct uinode*);
struct uinode* namei(char*);
void stati(struct inode*, struct stat*);
int readi(struct inode*, char*, uint, uint);
int writei(struct inode*, char*, uint, uint);
struct inode* mknod(char*, short, short, short);
int unlink(char*);
int link(char*, char*);
struct inode* igetroot(void);
int mkdir(char *path);
struct inode* create(char *path);
int dirlink(struct inode *dp, char *name, uint ino);
struct uinode* dirlookup(struct inode *dp, char *name, uint *poff);
void iupdate(struct inode *ip);
int namecmp(const char *s, const char *t);
struct uinode* ialloc(uint, short);
struct uinode* nameiparent(char *path, char *name);
// exec.c
int exec(char*, char**);
// number of elements in fixed-size array
#define NELEM(x) (sizeof(x)/sizeof((x)[0]))

22
exec.c
View file

@ -19,7 +19,7 @@ int
exec(char *path, char **argv)
{
uint sz, sp, p1, p2;
int i, nargs, argbytes, len;
int i, nargs, argbytes, len, off;
struct inode *ip;
struct elfhdr elf;
struct proghdr ph;
@ -29,7 +29,7 @@ exec(char *path, char **argv)
sz = 0;
mem = 0;
if((ip = namei(path)) == 0)
if((ip = ilock(namei(path))) == 0)
return -1;
if(readi(ip, (char*)&elf, 0, sizeof(elf)) < sizeof(elf))
@ -38,9 +38,8 @@ exec(char *path, char **argv)
if(elf.magic != ELF_MAGIC)
goto bad;
for(i = 0; i < elf.phnum; i++){
if(readi(ip, (char*)&ph, elf.phoff + i * sizeof(ph),
sizeof(ph)) != sizeof(ph))
for(i=0, off=elf.phoff; i<elf.phnum; i++, off+=sizeof(ph)){
if(readi(ip, (char*)&ph, off, sizeof(ph)) != sizeof(ph))
goto bad;
if(ph.type != ELF_PROG_LOAD)
continue;
@ -94,7 +93,7 @@ exec(char *path, char **argv)
for(last=s=path; *s; s++)
if(*s == '/')
last = s+1;
safestrcpy(cp->name, last, sizeof cp->name);
safestrcpy(cp->name, last, sizeof(cp->name));
// commit to the new image.
kfree(cp->mem, cp->sz);
@ -102,9 +101,8 @@ exec(char *path, char **argv)
cp->mem = mem;
mem = 0;
for(i = 0; i < elf.phnum; i++){
if(readi(ip, (char*)&ph, elf.phoff + i * sizeof(ph),
sizeof(ph)) != sizeof(ph))
for(i=0, off=elf.phoff; i<elf.phnum; i++, off+=sizeof(ph)){
if(readi(ip, (char*)&ph, off, sizeof(ph)) != sizeof(ph))
goto bad2;
if(ph.type != ELF_PROG_LOAD)
continue;
@ -115,7 +113,7 @@ exec(char *path, char **argv)
memset(cp->mem + ph.va + ph.filesz, 0, ph.memsz - ph.filesz);
}
iput(ip);
iput(iunlock(ip));
cp->tf->eip = elf.entry;
cp->tf->esp = sp;
@ -126,11 +124,11 @@ exec(char *path, char **argv)
bad:
if(mem)
kfree(mem, sz);
iput(ip);
iput(iunlock(ip));
return -1;
bad2:
iput(ip);
iput(iunlock(ip));
proc_exit();
return 0;
}

38
file.c
View file

@ -11,9 +11,8 @@
#include "fs.h"
#include "fsvar.h"
struct spinlock file_table_lock;
struct devsw devsw[NDEV];
struct spinlock file_table_lock;
struct file file[NFILE];
void
@ -22,7 +21,7 @@ fileinit(void)
initlock(&file_table_lock, "file_table");
}
// Allocate a file structure
// Allocate a file structure.
struct file*
filealloc(void)
{
@ -57,16 +56,17 @@ int
fileread(struct file *f, char *addr, int n)
{
int r;
struct inode *ip;
if(f->readable == 0)
return -1;
if(f->type == FD_PIPE)
return pipe_read(f->pipe, addr, n);
if(f->type == FD_FILE){
ilock(f->ip);
if((r = readi(f->ip, addr, f->off, n)) > 0)
if(f->type == FD_INODE){
ip = ilock(f->ip);
if((r = readi(ip, addr, f->off, n)) > 0)
f->off += r;
iunlock(f->ip);
iunlock(ip);
return r;
}
panic("fileread");
@ -77,16 +77,17 @@ int
filewrite(struct file *f, char *addr, int n)
{
int r;
struct inode *ip;
if(f->writable == 0)
return -1;
if(f->type == FD_PIPE)
return pipe_write(f->pipe, addr, n);
if(f->type == FD_FILE){
ilock(f->ip);
if((r = writei(f->ip, addr, f->off, n)) > 0)
if(f->type == FD_INODE){
ip = ilock(f->ip);
if((r = writei(ip, addr, f->off, n)) > 0)
f->off += r;
iunlock(f->ip);
iunlock(ip);
return r;
}
panic("filewrite");
@ -96,10 +97,12 @@ filewrite(struct file *f, char *addr, int n)
int
filestat(struct file *f, struct stat *st)
{
if(f->type == FD_FILE){
ilock(f->ip);
stati(f->ip, st);
iunlock(f->ip);
struct inode *ip;
if(f->type == FD_INODE){
ip = ilock(f->ip);
stati(ip, st);
iunlock(ip);
return 0;
}
return -1;
@ -110,6 +113,7 @@ void
fileclose(struct file *f)
{
struct file ff;
acquire(&file_table_lock);
if(f->ref < 1 || f->type == FD_CLOSED)
@ -127,8 +131,8 @@ fileclose(struct file *f)
if(ff.type == FD_PIPE)
pipe_close(ff.pipe, ff.writable);
else if(ff.type == FD_FILE)
idecref(ff.ip);
else if(ff.type == FD_INODE)
iput(ff.ip);
else
panic("fileclose");
}

4
file.h
View file

@ -1,9 +1,9 @@
struct file {
enum { FD_CLOSED, FD_NONE, FD_PIPE, FD_FILE } type;
enum { FD_CLOSED, FD_NONE, FD_PIPE, FD_INODE } type;
int ref; // reference count
char readable;
char writable;
struct pipe *pipe;
struct inode *ip;
struct uinode *ip;
uint off;
};

411
fs.c
View file

@ -7,8 +7,10 @@
// + Names: paths like /usr/rtm/xv6/fs.c for convenient naming.
//
// Disk layout is: superblock, inodes, disk bitmap, data blocks.
// TODO: Check locking!
//
// This file contains the low-level file system manipulation
// routines. The (higher-level) system call implementations
// are in sysfile.c.
#include "types.h"
#include "stat.h"
@ -25,7 +27,6 @@
#define min(a, b) ((a) < (b) ? (a) : (b))
static void itrunc(struct inode*);
static void iupdate(struct inode*);
// Blocks.
@ -51,7 +52,7 @@ balloc(uint dev)
m = 0x1 << (bi % 8);
if((bp->data[bi/8] & m) == 0) { // is block free?
bp->data[bi/8] |= 0x1 << (bi % 8);
bwrite(bp, BBLOCK(b, ninodes)); // mark it allocated on disk
bwrite(bp); // mark it allocated on disk
brelse(bp);
return b;
}
@ -74,14 +75,14 @@ bfree(int dev, uint b)
bp = bread(dev, b);
memset(bp->data, 0, BSIZE);
bwrite(bp, b);
bwrite(bp);
brelse(bp);
bp = bread(dev, BBLOCK(b, ninodes));
bi = b % BPB;
m = 0x1 << (bi % 8);
bp->data[bi/8] &= ~m;
bwrite(bp, BBLOCK(b, ninodes)); // mark it free on disk
bwrite(bp); // mark it free on disk
brelse(bp);
}
@ -98,11 +99,20 @@ bfree(int dev, uint b)
// It is an error to use an inode without holding a reference to it.
//
// Inodes can be marked busy, just like bufs, meaning
// that some process has logically locked the inode, and other processes
// are not allowed to look at it. Because the locking can last for
// a long time (for example, during a disk access), we use a flag
// like in buffer cache, not spin locks. The inode should always be
// locked during modifications to it.
// that some process has exclusive use of the inode.
// Processes are only allowed to read and write inode
// metadata and contents when holding the inode's lock.
// Because inodes locks are held during disk accesses,
// they are implemented using a flag, as in the buffer cache,
// not using spin locks. Callers are responsible for locking
// inodes before passing them to routines in this file; leaving
// this responsibility with the caller makes it possible for them
// to create arbitrarily-sized atomic operations.
//
// To give maximum control over locking to the callers,
// the routines in this file that return inode pointers
// return pointers to *unlocked* inodes. It is the callers'
// responsibility to lock them before using them.
struct {
struct spinlock lock;
@ -116,14 +126,8 @@ iinit(void)
}
// Find the inode with number inum on device dev
// and return the in-memory copy. The returned inode
// has its reference count incremented (and thus must be
// idecref'ed), but is *unlocked*, meaning that none of the fields
// except dev and inum are guaranteed to be initialized.
// This convention gives the caller maximum control over blocking;
// it also guarantees that iget will not sleep, which is useful in
// the early igetroot and when holding other locked inodes.
struct inode*
// and return the in-memory copy. h
static struct uinode*
iget(uint dev, uint inum)
{
struct inode *ip, *empty;
@ -136,7 +140,7 @@ iget(uint dev, uint inum)
if(ip->ref > 0 && ip->dev == dev && ip->inum == inum){
ip->ref++;
release(&icache.lock);
return ip;
return (struct uinode*)ip;
}
if(empty == 0 && ip->ref == 0) // Remember empty slot.
empty = ip;
@ -153,28 +157,37 @@ iget(uint dev, uint inum)
ip->flags = 0;
release(&icache.lock);
return ip;
return (struct uinode*)ip;
}
// Iget the inode for the file system root (/).
// This gets called before there is a current process: it cannot sleep!
struct inode*
igetroot(void)
// Increment reference count for ip.
// Returns ip to enable ip = idup(ip1) idiom.
struct uinode*
idup(struct uinode *uip)
{
struct inode *ip;
ip = iget(ROOTDEV, 1);
return ip;
ip = (struct inode*)uip;
acquire(&icache.lock);
ip->ref++;
release(&icache.lock);
return uip;
}
// Lock the given inode.
void
ilock(struct inode *ip)
struct inode*
ilock(struct uinode *uip)
{
struct buf *bp;
struct dinode *dip;
struct inode *ip;
ip = (struct inode*)uip;
if(ip == 0)
return 0;
if(ip->ref < 1)
panic("ilock");
panic("ilock: no refs");
acquire(&icache.lock);
while(ip->flags & I_BUSY)
@ -193,13 +206,19 @@ ilock(struct inode *ip)
memmove(ip->addrs, dip->addrs, sizeof(ip->addrs));
brelse(bp);
ip->flags |= I_VALID;
if(ip->type == 0)
panic("ilock: no type");
}
return ip;
}
// Unlock the given inode.
void
struct uinode*
iunlock(struct inode *ip)
{
if(ip == 0)
return 0;
if(!(ip->flags & I_BUSY) || ip->ref < 1)
panic("iunlock");
@ -207,36 +226,21 @@ iunlock(struct inode *ip)
ip->flags &= ~I_BUSY;
wakeup(ip);
release(&icache.lock);
}
// Unlock inode and drop reference.
void
iput(struct inode *ip)
{
iunlock(ip);
idecref(ip);
}
// Increment reference count for ip.
// Returns ip to enable ip = iincref(ip1) idiom.
struct inode*
iincref(struct inode *ip)
{
acquire(&icache.lock);
ip->ref++;
release(&icache.lock);
return ip;
return (struct uinode*)ip;
}
// Caller holds reference to unlocked ip. Drop reference.
void
idecref(struct inode *ip)
iput(struct uinode *uip)
{
struct inode *ip;
ip = (struct inode*)uip;
acquire(&icache.lock);
if(ip->ref == 1 && (ip->flags & I_VALID) && ip->nlink == 0) {
// inode is no longer used: truncate and free inode.
if(ip->flags & I_BUSY)
panic("idecref busy");
panic("iput busy");
ip->flags |= I_BUSY;
release(&icache.lock);
// XXX convince rsc that no one will come find this inode.
@ -251,7 +255,7 @@ idecref(struct inode *ip)
}
// Allocate a new inode with the given type on device dev.
struct inode*
struct uinode*
ialloc(uint dev, short type)
{
int inum, ninodes;
@ -270,7 +274,7 @@ ialloc(uint dev, short type)
if(dip->type == 0) { // a free inode
memset(dip, 0, sizeof(*dip));
dip->type = type;
bwrite(bp, IBLOCK(inum)); // mark it allocated on the disk
bwrite(bp); // mark it allocated on the disk
brelse(bp);
return iget(dev, inum);
}
@ -280,7 +284,7 @@ ialloc(uint dev, short type)
}
// Copy inode, which has changed, from memory to disk.
static void
void
iupdate(struct inode *ip)
{
struct buf *bp;
@ -294,7 +298,7 @@ iupdate(struct inode *ip)
dip->nlink = ip->nlink;
dip->size = ip->size;
memmove(dip->addrs, ip->addrs, sizeof(ip->addrs));
bwrite(bp, IBLOCK(ip->inum));
bwrite(bp);
brelse(bp);
}
@ -306,8 +310,8 @@ iupdate(struct inode *ip)
// listed in the block ip->addrs[INDIRECT].
// Return the disk block address of the nth block in inode ip.
// If there is no such block: if alloc is set, allocate one, else return -1.
uint
// If there is no such block, alloc controls whether one is allocated.
static uint
bmap(struct inode *ip, uint bn, int alloc)
{
uint addr, *a;
@ -339,7 +343,7 @@ bmap(struct inode *ip, uint bn, int alloc)
return -1;
}
a[bn] = addr = balloc(ip->dev);
bwrite(bp, ip->addrs[INDIRECT]);
bwrite(bp);
}
brelse(bp);
return addr;
@ -348,6 +352,7 @@ bmap(struct inode *ip, uint bn, int alloc)
panic("bmap: out of range");
}
// PAGEBREAK: 30
// Truncate inode (discard contents).
static void
itrunc(struct inode *ip)
@ -389,6 +394,7 @@ stati(struct inode *ip, struct stat *st)
st->size = ip->size;
}
//PAGEBREAK!
// Read data from inode.
int
readi(struct inode *ip, char *dst, uint off, uint n)
@ -416,6 +422,7 @@ readi(struct inode *ip, char *dst, uint off, uint n)
return n;
}
// PAGEBREAK!
// Write data to inode.
int
writei(struct inode *ip, char *src, uint off, uint n)
@ -438,7 +445,7 @@ writei(struct inode *ip, char *src, uint off, uint n)
bp = bread(ip->dev, bmap(ip, off/BSIZE, 1));
m = min(n - tot, BSIZE - off%BSIZE);
memmove(bp->data + off%BSIZE, src, m);
bwrite(bp, bmap(ip, off/BSIZE, 0));
bwrite(bp);
brelse(bp);
}
@ -449,12 +456,10 @@ writei(struct inode *ip, char *src, uint off, uint n)
return n;
}
//PAGEBREAK!
// Directories
//
// Directories are just inodes (files) filled with dirent structures.
// Compare two names, which are strings with a max length of DIRSIZ.
static int
int
namecmp(const char *s, const char *t)
{
int i;
@ -468,25 +473,9 @@ namecmp(const char *s, const char *t)
return 0;
}
// Copy one name to another.
static void
namecpy(char *s, const char *t)
{
int i;
for(i=0; i<DIRSIZ && t[i]; i++)
s[i] = t[i];
for(; i<DIRSIZ; i++)
s[i] = 0;
}
// Look for a directory entry in a directory.
// If not found, return -1.
// If found:
// set *poff to the byte offset of the directory entry
// set *pinum to the inode number
// return 0.
static struct inode*
// If found, set *poff to byte offset of entry.
struct uinode*
dirlookup(struct inode *dp, char *name, uint *poff)
{
uint off, inum;
@ -517,18 +506,29 @@ dirlookup(struct inode *dp, char *name, uint *poff)
return 0;
}
// Copy one name to another.
static void
namecpy(char *s, const char *t)
{
int i;
for(i=0; i<DIRSIZ && t[i]; i++)
s[i] = t[i];
for(; i<DIRSIZ; i++)
s[i] = 0;
}
// Write a new directory entry (name, ino) into the directory dp.
// Caller must have locked dp.
static int
int
dirlink(struct inode *dp, char *name, uint ino)
{
int off;
struct dirent de;
struct inode *ip;
struct uinode *ip;
// Double-check that name is not present.
// Check that name is not present.
if((ip = dirlookup(dp, name, 0)) != 0){
idecref(ip);
iput(ip);
return -1;
}
@ -548,49 +548,18 @@ dirlink(struct inode *dp, char *name, uint ino)
return 0;
}
// Create a new inode named name inside dp
// and return its locked inode structure.
// If name already exists, return 0.
static struct inode*
dircreat(struct inode *dp, char *name, short type, short major, short minor)
{
struct inode *ip;
ip = ialloc(dp->dev, type);
if(ip == 0)
return 0;
ilock(ip);
ip->major = major;
ip->minor = minor;
ip->size = 0;
ip->nlink = 1;
iupdate(ip);
if(dirlink(dp, name, ip->inum) < 0){
ip->nlink = 0;
iupdate(ip);
iput(ip);
return 0;
}
return ip;
}
// Paths
// Skip over the next path element in path,
// saving it in *name and its length in *len.
// Return a pointer to the element after that
// (after any trailing slashes).
// Thus the caller can check whether *path=='\0'
// to see whether the name just removed was
// the last one.
// If there is no name to remove, return 0.
// Copy the next path element from path into name.
// Return a pointer to the element following the copied one.
// The returned path has no leading slashes,
// so the caller can check *path=='\0' to see if the name is the last one.
// If no name to remove, return 0.
//
// Examples:
// skipelem("a/bb/c") = "bb/c", with *name = "a/bb/c", len=1
// skipelem("///a/bb") = "b", with *name="a/bb", len=1
// skipelem("") = skipelem("////") = 0
// skipelem("a/bb/c", name) = "bb/c", setting name = "a"
// skipelem("///a/bb", name) = "b", setting name="a"
// skipelem("", name) = skipelem("////", name) = 0
//
static char*
skipelem(char *path, char *name)
@ -617,201 +586,61 @@ skipelem(char *path, char *name)
return path;
}
// look up a path name, in one of three modes.
// NAMEI_LOOKUP: return locked target inode.
// NAMEI_CREATE: return locked parent inode.
// return 0 if name does exist.
// *ret_last points to last path component (i.e. new file name).
// *ret_ip points to the the name that did exist, if it did.
// *ret_ip and *ret_last may be zero even if return value is zero.
// NAMEI_DELETE: return locked parent inode, offset of dirent in *ret_off.
// return 0 if name doesn't exist.
struct inode*
// Look up and return the inode for a path name.
// If parent is set, return the inode for the parent
// and write the final path element to name, which
// should have room for DIRSIZ bytes.
static struct uinode*
_namei(char *path, int parent, char *name)
{
struct inode *dp, *ip;
struct uinode *dp, *ip;
struct inode *dpl;
uint off;
if(*path == '/')
dp = igetroot();
dp = iget(ROOTDEV, 1);
else
dp = iincref(cp->cwd);
ilock(dp);
dp = idup(cp->cwd);
while((path = skipelem(path, name)) != 0){
if(dp->type != T_DIR)
goto fail;
dpl = ilock(dp);
if(dpl->type != T_DIR){
iunlock(dpl);
iput(dp);
return 0;
}
if(parent && *path == '\0'){
// Stop one level early.
iunlock(dpl);
return dp;
}
if((ip = dirlookup(dp, name, &off)) == 0)
goto fail;
if((ip = dirlookup(dpl, name, &off)) == 0){
iunlock(dpl);
iput(dp);
iput(ip);
return 0;
}
iunlock(dpl);
iput(dp);
ilock(ip);
dp = ip;
if(dp->type == 0 || dp->nlink < 1)
panic("namei");
}
if(parent)
return 0;
return dp;
fail:
iput(dp);
return 0;
}
struct inode*
struct uinode*
namei(char *path)
{
char name[DIRSIZ];
return _namei(path, 0, name);
}
static struct inode*
struct uinode*
nameiparent(char *path, char *name)
{
return _namei(path, 1, name);
}
// Create the path and return its locked inode structure.
// If cp already exists, return 0.
struct inode*
mknod(char *path, short type, short major, short minor)
{
struct inode *ip, *dp;
char name[DIRSIZ];
if((dp = nameiparent(path, name)) == 0)
return 0;
ip = dircreat(dp, name, type, major, minor);
iput(dp);
return ip;
}
// Unlink the inode named cp.
int
unlink(char *path)
{
struct inode *ip, *dp;
struct dirent de;
uint off;
char name[DIRSIZ];
if((dp = nameiparent(path, name)) == 0)
return -1;
// Cannot unlink "." or "..".
if(namecmp(name, ".") == 0 || namecmp(name, "..") == 0){
iput(dp);
return -1;
}
if((ip = dirlookup(dp, name, &off)) == 0){
iput(dp);
return -1;
}
memset(&de, 0, sizeof(de));
if(writei(dp, (char*)&de, off, sizeof(de)) != sizeof(de))
panic("unlink dir write");
iput(dp);
ilock(ip);
if(ip->nlink < 1)
panic("unlink nlink < 1");
ip->nlink--;
iupdate(ip);
iput(ip);
return 0;
}
// Create the path new as a link to the same inode as old.
int
link(char *old, char *new)
{
struct inode *ip, *dp;
char name[DIRSIZ];
if((ip = namei(old)) == 0)
return -1;
if(ip->type == T_DIR){
iput(ip);
return -1;
}
iunlock(ip);
if((dp = nameiparent(new, name)) == 0){
idecref(ip);
return -1;
}
if(dp->dev != ip->dev || dirlink(dp, name, ip->inum) < 0){
idecref(ip);
iput(dp);
return -1;
}
iput(dp);
// XXX write ordering wrong here too.
ilock(ip);
ip->nlink++;
iupdate(ip);
iput(ip);
return 0;
}
int
mkdir(char *path)
{
struct inode *dp, *ip;
char name[DIRSIZ];
// XXX write ordering is screwy here- do we care?
if((dp = nameiparent(path, name)) == 0)
return -1;
if((ip = dircreat(dp, name, T_DIR, 0, 0)) == 0){
iput(dp);
return -1;
}
dp->nlink++;
iupdate(dp);
if(dirlink(ip, ".", ip->inum) < 0 || dirlink(ip, "..", dp->inum) < 0)
panic("mkdir");
iput(dp);
iput(ip);
return 0;
}
struct inode*
create(char *path)
{
struct inode *dp, *ip;
char name[DIRSIZ];
if((dp = nameiparent(path, name)) == 0)
return 0;
if((ip = dirlookup(dp, name, 0)) != 0){
iput(dp);
ilock(ip);
if(ip->type == T_DIR){
iput(ip);
return 0;
}
return ip;
}
if((ip = dircreat(dp, name, T_FILE, 0, 0)) == 0){
iput(dp);
return 0;
}
iput(dp);
return ip;
}

View file

@ -14,7 +14,11 @@ struct inode {
uint addrs[NADDRS];
};
#define ROOTDEV 1 // Device number of root file system
// unlocked inode - only dev and inum are available
struct uinode {
uint dev;
uint inum;
};
#define I_BUSY 0x1
#define I_VALID 0x2

82
main.c
View file

@ -12,8 +12,6 @@
extern char edata[], end[];
void proc0init();
// Bootstrap processor starts running C code here.
// This is called main0 not main so that it can have
// a void return type. Gcc can't handle functions named
@ -35,49 +33,37 @@ main0(void)
bcpu = mp_bcpu();
// switch to bootstrap processor's stack
asm volatile("movl %0, %%esp" : : "r" (cpus[bcpu].mpstack + MPSTACK - 32));
asm volatile("movl %0, %%ebp" : : "r" (cpus[bcpu].mpstack + MPSTACK));
asm volatile("movl %0, %%esp" : : "r" (cpus[bcpu].mpstack+MPSTACK-32));
asm volatile("movl %0, %%ebp" : : "r" (cpus[bcpu].mpstack+MPSTACK));
lapic_init(bcpu);
cprintf("\ncpu%d: starting xv6\n\n", cpu());
pinit(); // process table
binit(); // buffer cache
pic_init();
ioapic_init();
kinit(); // physical memory allocator
tvinit(); // trap vectors
idtinit(); // this CPU's interrupt descriptor table
fileinit();
iinit(); // i-node table
// make sure there's a TSS
setupsegs(0);
// initialize I/O devices, let them enable interrupts
console_init();
ide_init();
// start other CPUs
mp_startthem();
// turn on timer
if(ismp)
lapic_timerinit();
else
pit8253_timerinit();
// enable interrupts on the local APIC
lapic_enableintr();
pinit(); // process table
binit(); // buffer cache
pic_init(); // interrupt controller
ioapic_init(); // another interrupt controller
kinit(); // physical memory allocator
tvinit(); // trap vectors
idtinit(); // interrupt descriptor table
fileinit(); // file table
iinit(); // inode cache
setupsegs(0); // segments & TSS
console_init(); // I/O devices & their interrupts
ide_init(); // disk
mp_startthem(); // other CPUs
if(ismp){
lapic_timerinit(); // smp timer
lapic_enableintr(); // local interrupts
}else
pit8253_timerinit(); // uniprocessor timer
userinit(); // first user process
// enable interrupts on this processor.
cpus[cpu()].nlock--;
sti();
// initialize process 0
proc0init();
scheduler();
}
@ -106,29 +92,3 @@ mpmain(void)
scheduler();
}
void
proc0init(void)
{
struct proc *p;
extern uchar _binary_initcode_start[], _binary_initcode_size[];
p = copyproc(0);
p->sz = PAGE;
p->mem = kalloc(p->sz);
p->cwd = igetroot();
memset(&p->tf, 0, sizeof p->tf);
p->tf->es = p->tf->ds = p->tf->ss = (SEG_UDATA << 3) | DPL_USER;
p->tf->cs = (SEG_UCODE << 3) | DPL_USER;
p->tf->eflags = FL_IF;
p->tf->esp = p->sz;
// Push dummy return address to placate gcc.
p->tf->esp -= 4;
*(uint*)(p->mem + p->tf->esp) = 0xefefefef;
p->tf->eip = 0;
memmove(p->mem, _binary_initcode_start, (int)_binary_initcode_size);
safestrcpy(p->name, "initcode", sizeof p->name);
p->state = RUNNABLE;
}

View file

@ -8,3 +8,4 @@
#define NBUF 10 // size of disk block cache
#define NINODE 100 // maximum number of active i-nodes
#define NDEV 10 // maximum major device number
#define ROOTDEV 1 // device number of file system root disk

141
proc.c
View file

@ -11,7 +11,7 @@ struct spinlock proc_table_lock;
struct proc proc[NPROC];
struct proc *curproc[NCPU];
int next_pid = 1;
int nextpid = 1;
extern void forkret(void);
extern void forkret1(struct trapframe*);
@ -21,37 +21,27 @@ pinit(void)
initlock(&proc_table_lock, "proc_table");
}
// Set up CPU's segment descriptors and task state for a
// given process.
// If p==0, set up for "idle" state for when scheduler()
// is idling, not running any process.
void
setupsegs(struct proc *p)
// Look in the process table for an UNUSED proc.
// If found, change state to EMBRYO and return it.
// Otherwise return 0.
static struct proc*
allocproc(void)
{
struct cpu *c = &cpus[cpu()];
int i;
struct proc *p;
c->ts.ss0 = SEG_KDATA << 3;
if(p){
c->ts.esp0 = (uint)(p->kstack + KSTACKSIZE);
} else {
c->ts.esp0 = 0xffffffff;
acquire(&proc_table_lock);
for(i = 0; i < NPROC; i++){
p = &proc[i];
if(p->state == UNUSED){
p->state = EMBRYO;
p->pid = nextpid++;
release(&proc_table_lock);
return p;
}
}
c->gdt[0] = SEG_NULL;
c->gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0x100000 + 64*1024-1, 0);
c->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0);
c->gdt[SEG_TSS] = SEG16(STS_T32A, (uint)&c->ts, sizeof(c->ts)-1, 0);
c->gdt[SEG_TSS].s = 0;
if(p){
c->gdt[SEG_UCODE] = SEG(STA_X|STA_R, (uint)p->mem, p->sz-1, DPL_USER);
c->gdt[SEG_UDATA] = SEG(STA_W, (uint)p->mem, p->sz-1, DPL_USER);
} else {
c->gdt[SEG_UCODE] = SEG_NULL;
c->gdt[SEG_UDATA] = SEG_NULL;
}
lgdt(c->gdt, sizeof c->gdt);
ltr(SEG_TSS << 3);
release(&proc_table_lock);
return 0;
}
// Grow current process's memory by n bytes.
@ -73,29 +63,41 @@ growproc(int n)
return cp->sz - n;
}
// Look in the process table for an UNUSED proc.
// If found, change state to EMBRYO and return it.
// Otherwise return 0.
struct proc*
allocproc(void)
// Set up CPU's segment descriptors and task state for a
// given process.
// If p==0, set up for "idle" state for when scheduler()
// is idling, not running any process.
void
setupsegs(struct proc *p)
{
int i;
struct proc *p;
struct cpu *c = &cpus[cpu()];
for(i = 0; i < NPROC; i++){
p = &proc[i];
if(p->state == UNUSED){
p->state = EMBRYO;
return p;
}
c->ts.ss0 = SEG_KDATA << 3;
if(p)
c->ts.esp0 = (uint)(p->kstack + KSTACKSIZE);
else
c->ts.esp0 = 0xffffffff;
c->gdt[0] = SEG_NULL;
c->gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0x100000 + 64*1024-1, 0);
c->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0);
c->gdt[SEG_TSS] = SEG16(STS_T32A, (uint)&c->ts, sizeof(c->ts)-1, 0);
c->gdt[SEG_TSS].s = 0;
if(p){
c->gdt[SEG_UCODE] = SEG(STA_X|STA_R, (uint)p->mem, p->sz-1, DPL_USER);
c->gdt[SEG_UDATA] = SEG(STA_W, (uint)p->mem, p->sz-1, DPL_USER);
} else {
c->gdt[SEG_UCODE] = SEG_NULL;
c->gdt[SEG_UDATA] = SEG_NULL;
}
return 0;
lgdt(c->gdt, sizeof(c->gdt));
ltr(SEG_TSS << 3);
}
// Create a new process copying p as the parent.
// Does not copy the kernel stack.
// Instead, sets up stack to return as if from system call.
// Caller must arrange for process to run (set state to RUNNABLE).
// Sets up stack to return as if from system call.
// Caller must set state of returned proc to RUNNABLE.
struct proc*
copyproc(struct proc *p)
{
@ -103,13 +105,8 @@ copyproc(struct proc *p)
struct proc *np;
// Allocate process.
acquire(&proc_table_lock);
if((np = allocproc()) == 0){
release(&proc_table_lock);
if((np = allocproc()) == 0)
return 0;
}
np->pid = next_pid++;
release(&proc_table_lock);
// Allocate kernel stack.
if((np->kstack = kalloc(KSTACKSIZE)) == 0){
@ -120,7 +117,7 @@ copyproc(struct proc *p)
if(p){ // Copy process state from p.
np->ppid = p->pid;
memmove(np->tf, p->tf, sizeof *np->tf);
memmove(np->tf, p->tf, sizeof(*np->tf));
np->sz = p->sz;
if((np->mem = kalloc(np->sz)) == 0){
@ -132,24 +129,49 @@ copyproc(struct proc *p)
memmove(np->mem, p->mem, np->sz);
for(i = 0; i < NOFILE; i++){
np->ofile[i] = p->ofile[i];
if(np->ofile[i])
if((np->ofile[i] = p->ofile[i]) != 0)
fileincref(np->ofile[i]);
}
np->cwd = iincref(p->cwd);
np->cwd = idup(p->cwd);
}
// Set up new jmpbuf to start executing at forkret (see below).
memset(&np->jmpbuf, 0, sizeof np->jmpbuf);
memset(&np->jmpbuf, 0, sizeof(np->jmpbuf));
np->jmpbuf.eip = (uint)forkret;
np->jmpbuf.esp = (uint)np->tf - 4;
// Clear %eax so that fork system call returns 0 in child.
np->tf->eax = 0;
return np;
}
// Set up first user process.
void