386 lines
9.2 KiB
C
386 lines
9.2 KiB
C
#include "types.h"
|
|
#include "mmu.h"
|
|
#include "x86.h"
|
|
#include "param.h"
|
|
#include "fd.h"
|
|
#include "proc.h"
|
|
#include "defs.h"
|
|
#include "spinlock.h"
|
|
|
|
struct spinlock proc_table_lock;
|
|
|
|
struct proc proc[NPROC];
|
|
struct proc *curproc[NCPU];
|
|
int next_pid = 1;
|
|
extern void forkret(void);
|
|
extern void forkret1(struct Trapframe*);
|
|
|
|
/*
|
|
* set up a process's task state and segment descriptors
|
|
* correctly, given its current size and address in memory.
|
|
* this should be called whenever the latter change.
|
|
* doesn't change the cpu's current segmentation setup.
|
|
*/
|
|
void
|
|
setupsegs(struct proc *p)
|
|
{
|
|
memset(&p->ts, 0, sizeof(struct Taskstate));
|
|
p->ts.ss0 = SEG_KDATA << 3;
|
|
p->ts.esp0 = (unsigned)(p->kstack + KSTACKSIZE);
|
|
|
|
// XXX it may be wrong to modify the current segment table!
|
|
|
|
p->gdt[0] = SEG_NULL;
|
|
p->gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, 0);
|
|
p->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0);
|
|
p->gdt[SEG_TSS] = SEG16(STS_T32A, (unsigned) &p->ts,
|
|
sizeof(p->ts), 0);
|
|
p->gdt[SEG_TSS].s = 0;
|
|
p->gdt[SEG_UCODE] = SEG(STA_X|STA_R, (unsigned)p->mem, p->sz, 3);
|
|
p->gdt[SEG_UDATA] = SEG(STA_W, (unsigned)p->mem, p->sz, 3);
|
|
}
|
|
|
|
// Look in the process table for an UNUSED proc.
|
|
// If found, change state to EMBRYO and return it.
|
|
// Otherwise return 0.
|
|
struct proc*
|
|
allocproc(void)
|
|
{
|
|
int i;
|
|
struct proc *p;
|
|
|
|
for(i = 0; i < NPROC; i++){
|
|
p = &proc[i];
|
|
if(p->state == UNUSED){
|
|
p->state = EMBRYO;
|
|
return p;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Create a new process copying p as the parent.
|
|
// Does not copy the kernel stack.
|
|
// Instead, sets up stack to return as if from system call.
|
|
// Caller must arrange for process to run (set state to RUNNABLE).
|
|
struct proc *
|
|
copyproc(struct proc* p)
|
|
{
|
|
int i;
|
|
struct proc *np;
|
|
|
|
// Allocate process.
|
|
acquire(&proc_table_lock);
|
|
if((np = allocproc()) == 0){
|
|
release(&proc_table_lock);
|
|
return 0;
|
|
}
|
|
np->pid = next_pid++;
|
|
np->ppid = p->pid;
|
|
release(&proc_table_lock);
|
|
|
|
// Copy process image memory.
|
|
np->sz = p->sz;
|
|
np->mem = kalloc(np->sz);
|
|
if(np->mem == 0){
|
|
np->state = UNUSED;
|
|
return 0;
|
|
}
|
|
memmove(np->mem, p->mem, np->sz);
|
|
|
|
// Allocate kernel stack.
|
|
np->kstack = kalloc(KSTACKSIZE);
|
|
if(np->kstack == 0){
|
|
kfree(np->mem, np->sz);
|
|
np->state = UNUSED;
|
|
return 0;
|
|
}
|
|
|
|
// Initialize segment table.
|
|
setupsegs(np);
|
|
|
|
// Copy trapframe registers from parent.
|
|
np->tf = (struct Trapframe*)(np->kstack + KSTACKSIZE) - 1;
|
|
*np->tf = *p->tf;
|
|
|
|
// Clear %eax so that fork system call returns 0 in child.
|
|
np->tf->eax = 0;
|
|
|
|
// Set up new jmpbuf to start executing at forkret (see below).
|
|
memset(&np->jmpbuf, 0, sizeof np->jmpbuf);
|
|
np->jmpbuf.eip = (unsigned)forkret;
|
|
np->jmpbuf.esp = (unsigned)np->tf;
|
|
|
|
// Copy file descriptors
|
|
for(i = 0; i < NOFILE; i++){
|
|
np->fds[i] = p->fds[i];
|
|
if(np->fds[i])
|
|
fd_incref(np->fds[i]);
|
|
}
|
|
|
|
return np;
|
|
}
|
|
|
|
// Per-CPU process scheduler.
|
|
// Each CPU calls scheduler() after setting itself up.
|
|
// Scheduler never returns. It loops, doing:
|
|
// - choose a process to run
|
|
// - longjmp to start running that process
|
|
// - eventually that process transfers control back
|
|
// via longjmp back to the top of scheduler.
|
|
void
|
|
scheduler(void)
|
|
{
|
|
struct proc *p;
|
|
int i;
|
|
|
|
cprintf("start scheduler on cpu %d jmpbuf %p\n", cpu(), &cpus[cpu()].jmpbuf);
|
|
cpus[cpu()].lastproc = &proc[0];
|
|
|
|
for(;;){
|
|
// Loop over process table looking for process to run.
|
|
acquire(&proc_table_lock);
|
|
for(i = 0; i < NPROC; i++){
|
|
p = &proc[i];
|
|
if(p->state != RUNNABLE)
|
|
continue;
|
|
|
|
// Run this process.
|
|
// XXX move this into swtch or trapret or something.
|
|
// It can run on the other stack.
|
|
// h/w sets busy bit in TSS descriptor sometimes, and faults
|
|
// if it's set in LTR. so clear tss descriptor busy bit.
|
|
p->gdt[SEG_TSS].type = STS_T32A;
|
|
|
|
// XXX should probably have an lgdt() function in x86.h
|
|
// to confine all the inline assembly.
|
|
// XXX probably ought to lgdt on trap return too, in case
|
|
// a system call has moved a program or changed its size.
|
|
lgdt(p->gdt, sizeof p->gdt);
|
|
// asm volatile("lgdt %0" : : "g" (p->gdt_pd.lim));
|
|
|
|
ltr(SEG_TSS << 3);
|
|
|
|
// Switch to chosen process. It is the process's job
|
|
// to release proc_table_lock and then reacquire it
|
|
// before jumping back to us.
|
|
if(0) cprintf("cpu%d: run %d\n", cpu(), p-proc);
|
|
curproc[cpu()] = p;
|
|
p->state = RUNNING;
|
|
if(setjmp(&cpus[cpu()].jmpbuf) == 0)
|
|
longjmp(&p->jmpbuf);
|
|
|
|
// Process is done running for now.
|
|
// It should have changed its p->state before coming back.
|
|
curproc[cpu()] = 0;
|
|
if(p->state == RUNNING)
|
|
panic("swtch to scheduler with state=RUNNING");
|
|
|
|
// XXX if not holding proc_table_lock panic.
|
|
}
|
|
release(&proc_table_lock);
|
|
|
|
if(cpus[cpu()].nlock != 0)
|
|
panic("holding locks in scheduler");
|
|
|
|
// With proc_table_lock released, there are no
|
|
// locks held on this cpu, so interrupts are enabled.
|
|
// Hardware interrupts can happen here.
|
|
// Also, releasing the lock here lets the other CPUs
|
|
// look for runnable processes too.
|
|
}
|
|
}
|
|
|
|
// Enter scheduler. Must already hold proc_table_lock
|
|
// and have changed curproc[cpu()]->state.
|
|
void
|
|
sched(void)
|
|
{
|
|
if(setjmp(&curproc[cpu()]->jmpbuf) == 0)
|
|
longjmp(&cpus[cpu()].jmpbuf);
|
|
}
|
|
|
|
// Give up the CPU for one scheduling round.
|
|
void
|
|
yield(void)
|
|
{
|
|
struct proc *p;
|
|
|
|
if((p=curproc[cpu()]) == 0 || curproc[cpu()]->state != RUNNING)
|
|
panic("yield");
|
|
acquire(&proc_table_lock);
|
|
p->state = RUNNABLE;
|
|
sched();
|
|
release(&proc_table_lock);
|
|
}
|
|
|
|
// A process's very first scheduling by scheduler()
|
|
// will longjmp here to do the first jump into user space.
|
|
void
|
|
forkret(void)
|
|
{
|
|
// Still holding proc_table_lock from scheduler.
|
|
release(&proc_table_lock);
|
|
|
|
// Jump into assembly, never to return.
|
|
forkret1(curproc[cpu()]->tf);
|
|
}
|
|
|
|
// Atomically release lock and sleep on chan.
|
|
// Reacquires lock when reawakened.
|
|
void
|
|
sleep(void *chan, struct spinlock *lk)
|
|
{
|
|
struct proc *p = curproc[cpu()];
|
|
|
|
if(p == 0)
|
|
panic("sleep");
|
|
|
|
// Must acquire proc_table_lock in order to
|
|
// change p->state and then call sched.
|
|
// Once we hold proc_table_lock, we can be
|
|
// guaranteed that we won't miss any wakeup
|
|
// (wakeup runs with proc_table_lock locked),
|
|
// so it's okay to release lk.
|
|
if(lk != &proc_table_lock){
|
|
acquire(&proc_table_lock);
|
|
release(lk);
|
|
}
|
|
|
|
// Go to sleep.
|
|
p->chan = chan;
|
|
p->state = SLEEPING;
|
|
sched();
|
|
|
|
// Tidy up.
|
|
p->chan = 0;
|
|
|
|
// Reacquire original lock.
|
|
if(lk != &proc_table_lock){
|
|
release(&proc_table_lock);
|
|
acquire(lk);
|
|
}
|
|
}
|
|
|
|
// Wake up all processes sleeping on chan.
|
|
// Proc_table_lock must be held.
|
|
void
|
|
wakeup1(void *chan)
|
|
{
|
|
struct proc *p;
|
|
|
|
for(p = proc; p < &proc[NPROC]; p++)
|
|
if(p->state == SLEEPING && p->chan == chan)
|
|
p->state = RUNNABLE;
|
|
}
|
|
|
|
// Wake up all processes sleeping on chan.
|
|
// Proc_table_lock is acquired and released.
|
|
void
|
|
wakeup(void *chan)
|
|
{
|
|
acquire(&proc_table_lock);
|
|
wakeup1(chan);
|
|
release(&proc_table_lock);
|
|
}
|
|
|
|
// Kill the process with the given pid.
|
|
// Process won't actually exit until it returns
|
|
// to user space (see trap in trap.c).
|
|
int
|
|
proc_kill(int pid)
|
|
{
|
|
struct proc *p;
|
|
|
|
acquire(&proc_table_lock);
|
|
for(p = proc; p < &proc[NPROC]; p++){
|
|
if(p->pid == pid){
|
|
p->killed = 1;
|
|
// Wake process from sleep if necessary.
|
|
if(p->state == SLEEPING)
|
|
p->state = RUNNABLE;
|
|
release(&proc_table_lock);
|
|
return 0;
|
|
}
|
|
}
|
|
release(&proc_table_lock);
|
|
return -1;
|
|
}
|
|
|
|
// Exit the current process. Does not return.
|
|
// Exited processes remain in the zombie state
|
|
// until their parent calls wait() to find out they exited.
|
|
void
|
|
proc_exit(void)
|
|
{
|
|
struct proc *p;
|
|
struct proc *cp = curproc[cpu()];
|
|
int fd;
|
|
|
|
// Close all open files.
|
|
for(fd = 0; fd < NOFILE; fd++){
|
|
if(cp->fds[fd]){
|
|
fd_close(cp->fds[fd]);
|
|
cp->fds[fd] = 0;
|
|
}
|
|
}
|
|
|
|
acquire(&proc_table_lock);
|
|
|
|
// Wake up our parent.
|
|
for(p = proc; p < &proc[NPROC]; p++)
|
|
if(p->pid == cp->ppid)
|
|
wakeup1(p);
|
|
|
|
// Reparent our children to process 1.
|
|
for(p = proc; p < &proc[NPROC]; p++)
|
|
if(p->ppid == cp->pid)
|
|
p->ppid = 1;
|
|
|
|
// Jump into the scheduler, never to return.
|
|
cp->state = ZOMBIE;
|
|
sched();
|
|
panic("zombie exit");
|
|
}
|
|
|
|
// Wait for a child process to exit and return its pid.
|
|
// Return -1 if this process has no children.
|
|
int
|
|
proc_wait(void)
|
|
{
|
|
struct proc *p;
|
|
struct proc *cp = curproc[cpu()];
|
|
int i, havekids, pid;
|
|
|
|
acquire(&proc_table_lock);
|
|
for(;;){
|
|
// Scan through table looking zombie children.
|
|
havekids = 0;
|
|
for(i = 0; i < NPROC; i++){
|
|
p = &proc[i];
|
|
if(p->ppid == cp->pid){
|
|
if(p->state == ZOMBIE){
|
|
// Found one.
|
|
kfree(p->mem, p->sz);
|
|
kfree(p->kstack, KSTACKSIZE);
|
|
pid = p->pid;
|
|
p->state = UNUSED;
|
|
p->pid = 0;
|
|
release(&proc_table_lock);
|
|
return pid;
|
|
}
|
|
havekids = 1;
|
|
}
|
|
}
|
|
|
|
// No point waiting if we don't have any children.
|
|
if(!havekids){
|
|
release(&proc_table_lock);
|
|
return -1;
|
|
}
|
|
|
|
// Wait for children to exit. (See wakeup1 call in proc_exit.)
|
|
sleep(cp, &proc_table_lock);
|
|
}
|
|
}
|
|
|