mentat/query-projector/src/lib.rs

1245 lines
46 KiB
Rust
Raw Normal View History

// Copyright 2016 Mozilla
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use
// this file except in compliance with the License. You may obtain a copy of the
// License at http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#[macro_use]
extern crate error_chain;
extern crate indexmap;
extern crate rusqlite;
extern crate mentat_core;
extern crate mentat_db; // For value conversion.
extern crate mentat_query;
extern crate mentat_query_algebrizer;
extern crate mentat_query_sql;
extern crate mentat_sql;
use std::collections::{
BTreeSet,
};
use std::iter;
use std::rc::Rc;
use indexmap::{
IndexSet,
};
use rusqlite::{
Row,
Rows,
};
use mentat_core::{
SQLValueType,
SQLValueTypeSet,
TypedValue,
ValueType,
ValueTypeSet,
ValueTypeTag,
};
use mentat_core::util::{
Either,
};
use mentat_db::{
TypedSQLValue,
};
use mentat_query::{
Aggregate,
Element,
FindSpec,
Limit,
PlainSymbol,
QueryFunction,
Variable,
};
use mentat_query_algebrizer::{
AlgebraicQuery,
ColumnName,
ConjoiningClauses,
QualifiedAlias,
VariableBindings,
VariableColumn,
};
use mentat_query_sql::{
ColumnOrExpression,
Expression,
GroupBy,
Name,
Projection,
ProjectedColumn,
};
error_chain! {
types {
Error, ErrorKind, ResultExt, Result;
}
errors {
/// We're just not done yet. Message that the feature is recognized but not yet
/// implemented.
NotYetImplemented(t: String) {
description("not yet implemented")
display("not yet implemented: {}", t)
}
CannotProjectImpossibleBinding(op: SimpleAggregationOp) {
description("no possible types for variable in projection list")
display("no possible types for value provided to {:?}", op)
}
CannotApplyAggregateOperationToTypes(op: SimpleAggregationOp, types: ValueTypeSet) {
description("cannot apply projection operation to types")
display("cannot apply projection operation {:?} to types {:?}", op, types)
}
UnboundVariable(var: PlainSymbol) {
description("cannot project unbound variable")
display("cannot project unbound variable {:?}", var)
}
NoTypeAvailableForVariable(var: PlainSymbol) {
description("cannot find type for variable")
display("cannot find type for variable {:?}", var)
}
UnexpectedResultsType(actual: &'static str, expected: &'static str) {
description("unexpected query results type")
display("expected {}, got {}", expected, actual)
}
AmbiguousAggregates(min_max_count: usize, corresponding_count: usize) {
description("ambiguous aggregates")
display("min/max expressions: {} (max 1), corresponding: {}", min_max_count, corresponding_count)
}
}
foreign_links {
Rusqlite(rusqlite::Error);
}
links {
DbError(mentat_db::Error, mentat_db::ErrorKind);
}
}
#[derive(Debug, PartialEq, Eq)]
pub struct QueryOutput {
pub spec: Rc<FindSpec>,
pub results: QueryResults,
}
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum QueryResults {
Scalar(Option<TypedValue>),
Tuple(Option<Vec<TypedValue>>),
Coll(Vec<TypedValue>),
Rel(Vec<Vec<TypedValue>>),
}
impl From<QueryOutput> for QueryResults {
fn from(o: QueryOutput) -> QueryResults {
o.results
}
}
impl QueryOutput {
pub fn empty_factory(spec: &FindSpec) -> Box<Fn() -> QueryResults> {
use self::FindSpec::*;
match spec {
&FindScalar(_) => Box::new(|| QueryResults::Scalar(None)),
&FindTuple(_) => Box::new(|| QueryResults::Tuple(None)),
&FindColl(_) => Box::new(|| QueryResults::Coll(vec![])),
&FindRel(_) => Box::new(|| QueryResults::Rel(vec![])),
}
}
pub fn len(&self) -> usize {
self.results.len()
}
pub fn is_empty(&self) -> bool {
self.results.is_empty()
}
pub fn empty(spec: &Rc<FindSpec>) -> QueryOutput {
use self::FindSpec::*;
let results =
match &**spec {
&FindScalar(_) => QueryResults::Scalar(None),
&FindTuple(_) => QueryResults::Tuple(None),
&FindColl(_) => QueryResults::Coll(vec![]),
&FindRel(_) => QueryResults::Rel(vec![]),
};
QueryOutput {
spec: spec.clone(),
results: results,
}
}
pub fn from_constants(spec: &Rc<FindSpec>, bindings: VariableBindings) -> QueryResults {
use self::FindSpec::*;
match &**spec {
&FindScalar(Element::Variable(ref var)) |
&FindScalar(Element::Corresponding(ref var)) => {
let val = bindings.get(var).cloned();
QueryResults::Scalar(val)
},
&FindScalar(Element::Aggregate(ref _agg)) => {
// TODO
unimplemented!();
},
&FindTuple(ref elements) => {
let values = elements.iter()
.map(|e| match e {
&Element::Variable(ref var) |
&Element::Corresponding(ref var) => {
bindings.get(var).cloned().expect("every var to have a binding")
},
&Element::Aggregate(ref _agg) => {
// TODO: static computation of aggregates, then
// implement the condition in `is_fully_bound`.
unreachable!();
},
})
.collect();
QueryResults::Tuple(Some(values))
},
&FindColl(Element::Variable(ref var)) |
&FindColl(Element::Corresponding(ref var)) => {
let val = bindings.get(var).cloned().expect("every var to have a binding");
QueryResults::Coll(vec![val])
},
&FindColl(Element::Aggregate(ref _agg)) => {
// Does it even make sense to write
// [:find [(max ?x) ...] :where [_ :foo/bar ?x]]
// ?
// TODO
unimplemented!();
},
&FindRel(ref elements) => {
let values = elements.iter().map(|e| match e {
&Element::Variable(ref var) |
&Element::Corresponding(ref var) => {
bindings.get(var).cloned().expect("every var to have a binding")
},
&Element::Aggregate(ref _agg) => {
// TODO: static computation of aggregates, then
// implement the condition in `is_fully_bound`.
unreachable!();
},
}).collect();
QueryResults::Rel(vec![values])
},
}
}
pub fn into_scalar(self) -> Result<Option<TypedValue>> {
self.results.into_scalar()
}
pub fn into_coll(self) -> Result<Vec<TypedValue>> {
self.results.into_coll()
}
pub fn into_tuple(self) -> Result<Option<Vec<TypedValue>>> {
self.results.into_tuple()
}
pub fn into_rel(self) -> Result<Vec<Vec<TypedValue>>> {
self.results.into_rel()
}
}
impl QueryResults {
pub fn len(&self) -> usize {
use QueryResults::*;
match self {
&Scalar(ref o) => if o.is_some() { 1 } else { 0 },
&Tuple(ref o) => if o.is_some() { 1 } else { 0 },
&Coll(ref v) => v.len(),
&Rel(ref v) => v.len(),
}
}
pub fn is_empty(&self) -> bool {
use QueryResults::*;
match self {
&Scalar(ref o) => o.is_none(),
&Tuple(ref o) => o.is_none(),
&Coll(ref v) => v.is_empty(),
&Rel(ref v) => v.is_empty(),
}
}
2017-12-06 22:34:48 +00:00
pub fn into_scalar(self) -> Result<Option<TypedValue>> {
match self {
QueryResults::Scalar(o) => Ok(o),
QueryResults::Coll(_) => bail!(ErrorKind::UnexpectedResultsType("coll", "scalar")),
QueryResults::Tuple(_) => bail!(ErrorKind::UnexpectedResultsType("tuple", "scalar")),
QueryResults::Rel(_) => bail!(ErrorKind::UnexpectedResultsType("rel", "scalar")),
}
}
pub fn into_coll(self) -> Result<Vec<TypedValue>> {
match self {
QueryResults::Scalar(_) => bail!(ErrorKind::UnexpectedResultsType("scalar", "coll")),
QueryResults::Coll(c) => Ok(c),
QueryResults::Tuple(_) => bail!(ErrorKind::UnexpectedResultsType("tuple", "coll")),
QueryResults::Rel(_) => bail!(ErrorKind::UnexpectedResultsType("rel", "coll")),
}
}
pub fn into_tuple(self) -> Result<Option<Vec<TypedValue>>> {
match self {
QueryResults::Scalar(_) => bail!(ErrorKind::UnexpectedResultsType("scalar", "tuple")),
QueryResults::Coll(_) => bail!(ErrorKind::UnexpectedResultsType("coll", "tuple")),
QueryResults::Tuple(t) => Ok(t),
QueryResults::Rel(_) => bail!(ErrorKind::UnexpectedResultsType("rel", "tuple")),
}
}
pub fn into_rel(self) -> Result<Vec<Vec<TypedValue>>> {
match self {
QueryResults::Scalar(_) => bail!(ErrorKind::UnexpectedResultsType("scalar", "rel")),
QueryResults::Coll(_) => bail!(ErrorKind::UnexpectedResultsType("coll", "rel")),
QueryResults::Tuple(_) => bail!(ErrorKind::UnexpectedResultsType("tuple", "rel")),
QueryResults::Rel(r) => Ok(r),
}
}
}
type Index = i32; // See rusqlite::RowIndex.
enum TypedIndex {
Known(Index, ValueTypeTag),
Unknown(Index, Index),
}
impl TypedIndex {
/// Look up this index and type(index) pair in the provided row.
/// This function will panic if:
///
/// - This is an `Unknown` and the retrieved type tag isn't an i32.
/// - If the retrieved value can't be coerced to a rusqlite `Value`.
/// - Either index is out of bounds.
///
/// Because we construct our SQL projection list, the tag that stored the data, and this
/// consumer, a panic here implies that we have a bad bug — we put data of a very wrong type in
/// a row, and thus can't coerce to Value, we're retrieving from the wrong place, or our
/// generated SQL is junk.
///
/// This function will return a runtime error if the type tag is unknown, or the value is
/// otherwise not convertible by the DB layer.
fn lookup<'a, 'stmt>(&self, row: &Row<'a, 'stmt>) -> Result<TypedValue> {
use TypedIndex::*;
match self {
&Known(value_index, value_type) => {
let v: rusqlite::types::Value = row.get(value_index);
TypedValue::from_sql_value_pair(v, value_type).map_err(|e| e.into())
},
&Unknown(value_index, type_index) => {
let v: rusqlite::types::Value = row.get(value_index);
let value_type_tag: i32 = row.get(type_index);
TypedValue::from_sql_value_pair(v, value_type_tag).map_err(|e| e.into())
},
}
}
}
fn cc_column(cc: &ConjoiningClauses, var: &Variable) -> Result<QualifiedAlias> {
cc.column_bindings
.get(var)
.and_then(|cols| cols.get(0).cloned())
.ok_or_else(|| ErrorKind::UnboundVariable(var.name()).into())
}
fn candidate_column(cc: &ConjoiningClauses, var: &Variable) -> Result<(ColumnOrExpression, Name)> {
// Every variable should be bound by the top-level CC to at least
// one column in the query. If that constraint is violated it's a
// bug in our code, so it's appropriate to panic here.
cc_column(cc, var)
.map(|qa| {
let name = VariableColumn::Variable(var.clone()).column_name();
(ColumnOrExpression::Column(qa), name)
})
}
fn candidate_type_column(cc: &ConjoiningClauses, var: &Variable) -> Result<(ColumnOrExpression, Name)> {
cc.extracted_types
.get(var)
.cloned()
.map(|alias| {
let type_name = VariableColumn::VariableTypeTag(var.clone()).column_name();
(ColumnOrExpression::Column(alias), type_name)
})
.ok_or_else(|| ErrorKind::UnboundVariable(var.name()).into())
}
/// Return the projected column -- that is, a value or SQL column and an associated name -- for a
/// given variable. Also return the type.
/// Callers are expected to determine whether to project a type tag as an additional SQL column.
pub fn projected_column_for_var(var: &Variable, cc: &ConjoiningClauses) -> Result<(ProjectedColumn, ValueTypeSet)> {
if let Some(value) = cc.bound_value(&var) {
// If we already know the value, then our lives are easy.
let tag = value.value_type();
let name = VariableColumn::Variable(var.clone()).column_name();
Ok((ProjectedColumn(ColumnOrExpression::Value(value.clone()), name), ValueTypeSet::of_one(tag)))
} else {
// If we don't, then the CC *must* have bound the variable.
let (column, name) = candidate_column(cc, var)?;
Ok((ProjectedColumn(column, name), cc.known_type_set(var)))
}
}
/// Returns two values:
/// - The `ColumnOrExpression` to use in the query. This will always refer to other
/// variables by name; never to a datoms column.
/// - The known type of that value.
fn projected_column_for_simple_aggregate(simple: &SimpleAggregate, cc: &ConjoiningClauses) -> Result<(ProjectedColumn, ValueType)> {
let known_types = cc.known_type_set(&simple.var);
let return_type = simple.op.is_applicable_to_types(known_types)?;
let projected_column_or_expression =
if let Some(value) = cc.bound_value(&simple.var) {
// Oh, we already know the value!
if simple.use_static_value() {
// We can statically compute the aggregate result for some operators -- not count or
// sum, but avg/max/min are OK.
ColumnOrExpression::Value(value)
} else {
let expression = Expression::Unary {
sql_op: simple.op.to_sql(),
arg: ColumnOrExpression::Value(value),
};
ColumnOrExpression::Expression(Box::new(expression), return_type)
}
} else {
// The common case: the values are bound during execution.
let name = VariableColumn::Variable(simple.var.clone()).column_name();
let expression = Expression::Unary {
sql_op: simple.op.to_sql(),
arg: ColumnOrExpression::ExistingColumn(name),
};
ColumnOrExpression::Expression(Box::new(expression), return_type)
};
Ok((ProjectedColumn(projected_column_or_expression, simple.column_name()), return_type))
}
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum SimpleAggregationOp {
Avg,
Count,
Max,
Min,
Sum,
}
impl SimpleAggregationOp {
fn to_sql(&self) -> &'static str {
use SimpleAggregationOp::*;
match self {
&Avg => "avg",
&Count => "count",
&Max => "max",
&Min => "min",
&Sum => "sum",
}
}
fn for_function(function: &QueryFunction) -> Option<SimpleAggregationOp> {
match function.0.plain_name() {
"avg" => Some(SimpleAggregationOp::Avg),
"count" => Some(SimpleAggregationOp::Count),
"max" => Some(SimpleAggregationOp::Max),
"min" => Some(SimpleAggregationOp::Min),
"sum" => Some(SimpleAggregationOp::Sum),
_ => None,
}
}
/// With knowledge of the types to which a variable might be bound,
/// return a `Result` to determine whether this aggregation is suitable.
/// For example, it's valid to take the `Avg` of `{Double, Long}`, invalid
/// to take `Sum` of `{Instant}`, valid to take (lexicographic) `Max` of `{String}`,
/// but invalid to take `Max` of `{Uuid, String}`.
///
/// The returned type is the type of the result of the aggregation.
fn is_applicable_to_types(&self, possibilities: ValueTypeSet) -> Result<ValueType> {
use SimpleAggregationOp::*;
if possibilities.is_empty() {
bail!(ErrorKind::CannotProjectImpossibleBinding(*self))
}
match self {
// One can always count results.
&Count => Ok(ValueType::Long),
// Only numeric types can be averaged or summed.
&Avg => {
if possibilities.is_only_numeric() {
// The mean of a set of numeric values will always, for our purposes, be a double.
Ok(ValueType::Double)
} else {
bail!(ErrorKind::CannotApplyAggregateOperationToTypes(*self, possibilities))
}
},
&Sum => {
if possibilities.is_only_numeric() {
if possibilities.contains(ValueType::Double) {
Ok(ValueType::Double)
} else {
// TODO: BigInt.
Ok(ValueType::Long)
}
} else {
bail!(ErrorKind::CannotApplyAggregateOperationToTypes(*self, possibilities))
}
},
&Max | &Min => {
if possibilities.is_unit() {
use ValueType::*;
let the_type = possibilities.exemplar().expect("a type");
match the_type {
// These types are numerically ordered.
Double | Long | Instant => Ok(the_type),
// Boolean: false < true.
Boolean => Ok(the_type),
// String: lexicographic order.
String => Ok(the_type),
// These types are unordered.
Keyword | Ref | Uuid => {
bail!(ErrorKind::CannotApplyAggregateOperationToTypes(*self, possibilities))
},
}
} else {
// It cannot be empty -- we checked.
// The only types that are valid to compare cross-type are numbers.
if possibilities.is_only_numeric() {
// Note that if the max/min is a Long, it will be returned as a Double!
if possibilities.contains(ValueType::Double) {
Ok(ValueType::Double)
} else {
// TODO: BigInt.
Ok(ValueType::Long)
}
} else {
bail!(ErrorKind::CannotApplyAggregateOperationToTypes(*self, possibilities))
}
}
},
}
}
}
struct SimpleAggregate {
op: SimpleAggregationOp,
var: Variable,
}
impl SimpleAggregate {
fn column_name(&self) -> Name {
format!("({} {})", self.op.to_sql(), self.var.name())
}
fn use_static_value(&self) -> bool {
use SimpleAggregationOp::*;
match self.op {
Avg | Max | Min => true,
Count | Sum => false,
}
}
}
trait SimpleAggregation {
fn to_simple(&self) -> Option<SimpleAggregate>;
}
impl SimpleAggregation for Aggregate {
fn to_simple(&self) -> Option<SimpleAggregate> {
if self.args.len() != 1 {
return None;
}
self.args[0]
.as_variable()
.and_then(|v| SimpleAggregationOp::for_function(&self.func)
.map(|op| SimpleAggregate { op, var: v.clone(), }))
}
}
/// An internal temporary struct to pass between the projection 'walk' and the
/// resultant projector.
/// Projection accumulates four things:
/// - Two SQL projection lists. We need two because aggregate queries are nested
/// in order to apply DISTINCT to values prior to aggregation.
/// - A collection of templates for the projector to use to extract values.
/// - A list of columns to use for grouping. Grouping is a property of the projection!
struct ProjectedElements {
sql_projection: Projection,
pre_aggregate_projection: Option<Projection>,
templates: Vec<TypedIndex>,
group_by: Vec<GroupBy>,
}
/// Walk an iterator of `Element`s, collecting projector templates and columns.
///
/// Returns a `ProjectedElements`, which combines SQL projections
/// and a `Vec` of `TypedIndex` 'keys' to use when looking up values.
///
/// Callers must ensure that every `Element` is distinct -- a query like
///
/// ```edn
/// [:find ?x ?x :where [?x _ _]]
/// ```
///
/// should fail to parse. See #358.
fn project_elements<'a, I: IntoIterator<Item = &'a Element>>(
count: usize,
elements: I,
query: &AlgebraicQuery) -> Result<ProjectedElements> {
// Give a little padding for type tags.
let mut inner_projection = Vec::with_capacity(count + 2);
// Everything in the outer query will _either_ be an aggregate operation
// _or_ a reference to a name projected from the inner.
// We'll expand them later.
let mut outer_projection: Vec<Either<Name, ProjectedColumn>> = Vec::with_capacity(count + 2);
let mut i: i32 = 0;
let mut min_max_count: usize = 0;
let mut corresponding_count: usize = 0;
let mut templates = vec![];
let mut aggregates = false;
// Any variable that appears intact in the :find clause, not inside an aggregate expression.
// "Query variables not in aggregate expressions will group the results and appear intact
// in the result."
// We use an ordered set here so that we group in the correct order.
let mut outer_variables = IndexSet::new();
// Any variable that we are projecting from the inner query.
let mut inner_variables = BTreeSet::new();
for e in elements {
if let &Element::Corresponding(_) = e {
corresponding_count += 1;
}
match e {
// Each time we come across a variable, we push a SQL column
// into the SQL projection, aliased to the name of the variable,
// and we push an annotated index into the projector.
&Element::Variable(ref var) |
&Element::Corresponding(ref var) => {
if outer_variables.contains(var) {
eprintln!("Warning: duplicate variable {} in query.", var);
}
// TODO: it's an error to have `[:find ?x (the ?x) …]`.
outer_variables.insert(var.clone());
inner_variables.insert(var.clone());
let (projected_column, type_set) = projected_column_for_var(&var, &query.cc)?;
outer_projection.push(Either::Left(projected_column.1.clone()));
inner_projection.push(projected_column);
if let Some(tag) = type_set.unique_type_tag() {
templates.push(TypedIndex::Known(i, tag));
i += 1; // We used one SQL column.
} else {
templates.push(TypedIndex::Unknown(i, i + 1));
i += 2; // We used two SQL columns.
// Also project the type from the SQL query.
let (type_column, type_name) = candidate_type_column(&query.cc, &var)?;
inner_projection.push(ProjectedColumn(type_column, type_name.clone()));
outer_projection.push(Either::Left(type_name));
}
},
&Element::Aggregate(ref a) => {
if let Some(simple) = a.to_simple() {
aggregates = true;
use SimpleAggregationOp::*;
match simple.op {
Max | Min => {
min_max_count += 1;
},
Avg | Count | Sum => (),
}
// When we encounter a simple aggregate -- one in which the aggregation can be
// implemented in SQL, on a single variable -- we just push the SQL aggregation op.
// We must ensure the following:
// - There's a column for the var.
// - The type of the var is known to be restricted to a sensible input set
// (not necessarily a single type, but e.g., all vals must be Double or Long).
// - The type set must be appropriate for the operation. E.g., `Sum` is not a
// meaningful operation on instants.
let (projected_column, return_type) = projected_column_for_simple_aggregate(&simple, &query.cc)?;
outer_projection.push(Either::Right(projected_column));
if !inner_variables.contains(&simple.var) {
inner_variables.insert(simple.var.clone());
let (projected_column, _type_set) = projected_column_for_var(&simple.var, &query.cc)?;
inner_projection.push(projected_column);
if query.cc.known_type_set(&simple.var).unique_type_tag().is_none() {
// Also project the type from the SQL query.
let (type_column, type_name) = candidate_type_column(&query.cc, &simple.var)?;
inner_projection.push(ProjectedColumn(type_column, type_name.clone()));
}
}
// We might regret using the type tag here instead of the `ValueType`.
templates.push(TypedIndex::Known(i, return_type.value_type_tag()));
i += 1;
} else {
// TODO: complex aggregates.
bail!(ErrorKind::NotYetImplemented("complex aggregates".into()));
}
},
}
}
match (min_max_count, corresponding_count) {
(0, 0) | (_, 0) => {},
(0, _) => {
eprintln!("Warning: used `(the ?var)` without `min` or `max`.");
},
(1, _) => {
// This is the success case!
},
(n, c) => {
bail!(ErrorKind::AmbiguousAggregates(n, c));
},
}
// Anything used in ORDER BY (which we're given in `named_projection`)
// needs to be in the SQL column list so we can refer to it by name.
//
// They don't affect projection.
//
// If a variable is of a non-fixed type, also project the type tag column, so we don't
// accidentally unify across types when considering uniqueness!
for var in query.named_projection.iter() {
if outer_variables.contains(var) {
continue;
}
// If it's a fixed value, we need do nothing further.
if query.cc.is_value_bound(&var) {
continue;
}
let already_inner = inner_variables.contains(&var);
let (column, name) = candidate_column(&query.cc, &var)?;
if !already_inner {
inner_projection.push(ProjectedColumn(column, name.clone()));
inner_variables.insert(var.clone());
}
outer_projection.push(Either::Left(name));
outer_variables.insert(var.clone());
// We don't care if a column has a single _type_, we care if it has a single type _tag_,
// because that's what we'll use if we're projecting. E.g., Long and Double.
// Single type implies single type tag, and is cheaper, so we check that first.
let types = query.cc.known_type_set(&var);
if !types.has_unique_type_tag() {
let (type_column, type_name) = candidate_type_column(&query.cc, &var)?;
if !already_inner {
inner_projection.push(ProjectedColumn(type_column, type_name.clone()));
}
outer_projection.push(Either::Left(type_name));
}
}
if !aggregates {
// We're done -- we never need to group unless we're aggregating.
return Ok(ProjectedElements {
sql_projection: Projection::Columns(inner_projection),
pre_aggregate_projection: None,
templates,
group_by: vec![],
});
}
// OK, on to aggregates.
// We need to produce two SQL projection lists: one for an inner query and one for the outer.
//
// The inner serves these purposes:
// - Projecting variables to avoid duplicates being elided. (:with)
// - Making bindings available to the outermost query for projection, ordering, and grouping.
//
// The outer is consumed by the projector.
//
// We will also be producing:
// - A GROUP BY list to group the output of the inner query by non-aggregate variables
// so that it can be correctly aggregated.
// Turn this collection of vars into a collection of columns from the query.
// We don't allow grouping on anything but a variable bound in the query.
// We group by tag if necessary.
let mut group_by = Vec::with_capacity(outer_variables.len() + 2);
for var in outer_variables.into_iter() {
if query.cc.is_value_bound(&var) {
continue;
}
// The GROUP BY goes outside, but it needs every variable and type tag to be
// projected from inside. Collect in both directions here.
let name = VariableColumn::Variable(var.clone()).column_name();
group_by.push(GroupBy::ProjectedColumn(name));
let needs_type_projection = !query.cc.known_type_set(&var).has_unique_type_tag();
let already_inner = inner_variables.contains(&var);
if !already_inner {
let (column, name) = candidate_column(&query.cc, &var)?;
inner_projection.push(ProjectedColumn(column, name.clone()));
}
if needs_type_projection {
let type_name = VariableColumn::VariableTypeTag(var.clone()).column_name();
if !already_inner {
let type_col = query.cc
.extracted_types
.get(&var)
.cloned()
.ok_or_else(|| ErrorKind::NoTypeAvailableForVariable(var.name().clone()))?;
inner_projection.push(ProjectedColumn(ColumnOrExpression::Column(type_col), type_name.clone()));
}
group_by.push(GroupBy::ProjectedColumn(type_name));
};
}
for var in query.with.iter() {
// We never need to project a constant.
if query.cc.is_value_bound(&var) {
continue;
}
// We don't need to add inner projections for :with if they are already there.
if !inner_variables.contains(&var) {
let (projected_column, type_set) = projected_column_for_var(&var, &query.cc)?;
inner_projection.push(projected_column);
if type_set.unique_type_tag().is_none() {
// Also project the type from the SQL query.
let (type_column, type_name) = candidate_type_column(&query.cc, &var)?;
inner_projection.push(ProjectedColumn(type_column, type_name.clone()));
}
}
}
// At this point we know we have a double-layer projection. Collect the outer.
//
// If we have an inner and outer layer, the inner layer will name its
// variables, and the outer will re-project them.
// If we only have one layer, then the outer will do the naming.
// (We could try to not use names in the inner query, but then what would we do for
// `ground` and known values?)
// Walk the projection, switching the outer columns to use the inner names.
let outer_projection = outer_projection.into_iter().map(|c| {
match c {
Either::Left(name) => {
ProjectedColumn(ColumnOrExpression::ExistingColumn(name.clone()),
name)
},
Either::Right(pc) => pc,
}
}).collect();
Ok(ProjectedElements {
sql_projection: Projection::Columns(outer_projection),
pre_aggregate_projection: Some(Projection::Columns(inner_projection)),
templates,
group_by,
})
}
pub trait Projector {
fn project<'stmt>(&self, rows: Rows<'stmt>) -> Result<QueryOutput>;
fn columns<'s>(&'s self) -> Box<Iterator<Item=&Element> + 's>;
}
/// A projector that produces a `QueryResult` containing fixed data.
/// Takes a boxed function that should return an empty result set of the desired type.
pub struct ConstantProjector {
spec: Rc<FindSpec>,
results_factory: Box<Fn() -> QueryResults>,
}
impl ConstantProjector {
fn new(spec: Rc<FindSpec>, results_factory: Box<Fn() -> QueryResults>) -> ConstantProjector {
ConstantProjector {
spec: spec,
results_factory: results_factory,
}
}
pub fn project_without_rows<'stmt>(&self) -> Result<QueryOutput> {
let results = (self.results_factory)();
let spec = self.spec.clone();
Ok(QueryOutput {
spec: spec,
results: results,
})
}
}
impl Projector for ConstantProjector {
fn project<'stmt>(&self, _: Rows<'stmt>) -> Result<QueryOutput> {
self.project_without_rows()
}
fn columns<'s>(&'s self) -> Box<Iterator<Item=&Element> + 's> {
self.spec.columns()
}
}
struct ScalarProjector {
spec: Rc<FindSpec>,
template: TypedIndex,
}
impl ScalarProjector {
fn with_template(spec: Rc<FindSpec>, template: TypedIndex) -> ScalarProjector {
ScalarProjector {
spec: spec,
template: template,
}
}
fn combine(spec: Rc<FindSpec>, mut elements: ProjectedElements) -> Result<CombinedProjection> {
let template = elements.templates.pop().expect("Expected a single template");
Ok(CombinedProjection {
sql_projection: elements.sql_projection,
pre_aggregate_projection: elements.pre_aggregate_projection,
datalog_projector: Box::new(ScalarProjector::with_template(spec, template)),
distinct: false,
group_by_cols: elements.group_by,
})
}
}
impl Projector for ScalarProjector {
fn project<'stmt>(&self, mut rows: Rows<'stmt>) -> Result<QueryOutput> {
let results =
if let Some(r) = rows.next() {
let row = r?;
let binding = self.template.lookup(&row)?;
QueryResults::Scalar(Some(binding))
} else {
QueryResults::Scalar(None)
};
Ok(QueryOutput {
spec: self.spec.clone(),
results: results,
})
}
fn columns<'s>(&'s self) -> Box<Iterator<Item=&Element> + 's> {
self.spec.columns()
}
}
/// A tuple projector produces a single vector. It's the single-result version of rel.
struct TupleProjector {
spec: Rc<FindSpec>,
len: usize,
templates: Vec<TypedIndex>,
}
impl TupleProjector {
fn with_templates(spec: Rc<FindSpec>, len: usize, templates: Vec<TypedIndex>) -> TupleProjector {
TupleProjector {
spec: spec,
len: len,
templates: templates,
}
}
// This is exactly the same as for rel.
fn collect_bindings<'a, 'stmt>(&self, row: Row<'a, 'stmt>) -> Result<Vec<TypedValue>> {
// There will be at least as many SQL columns as Datalog columns.
// gte 'cos we might be querying extra columns for ordering.
// The templates will take care of ignoring columns.
assert!(row.column_count() >= self.len as i32);
self.templates
.iter()
.map(|ti| ti.lookup(&row))
.collect::<Result<Vec<TypedValue>>>()
}
fn combine(spec: Rc<FindSpec>, column_count: usize, elements: ProjectedElements) -> Result<CombinedProjection> {
let p = TupleProjector::with_templates(spec, column_count, elements.templates);
Ok(CombinedProjection {
sql_projection: elements.sql_projection,
pre_aggregate_projection: elements.pre_aggregate_projection,
datalog_projector: Box::new(p),
distinct: false,
group_by_cols: elements.group_by,
})
}
}
impl Projector for TupleProjector {
fn project<'stmt>(&self, mut rows: Rows<'stmt>) -> Result<QueryOutput> {
let results =
if let Some(r) = rows.next() {
let row = r?;
let bindings = self.collect_bindings(row)?;
QueryResults::Tuple(Some(bindings))
} else {
QueryResults::Tuple(None)
};
Ok(QueryOutput {
spec: self.spec.clone(),
results: results,
})
}
fn columns<'s>(&'s self) -> Box<Iterator<Item=&Element> + 's> {
self.spec.columns()
}
}
/// A rel projector produces a vector of vectors.
/// Each inner vector is the same size, and sourced from the same columns.
/// One inner vector is produced per `Row`.
/// Each column in the inner vector is the result of taking one or two columns from
/// the `Row`: one for the value and optionally one for the type tag.
struct RelProjector {
spec: Rc<FindSpec>,
len: usize,
templates: Vec<TypedIndex>,
}
impl RelProjector {
fn with_templates(spec: Rc<FindSpec>, len: usize, templates: Vec<TypedIndex>) -> RelProjector {
RelProjector {
spec: spec,
len: len,
templates: templates,
}
}
fn collect_bindings<'a, 'stmt>(&self, row: Row<'a, 'stmt>) -> Result<Vec<TypedValue>> {
// There will be at least as many SQL columns as Datalog columns.
// gte 'cos we might be querying extra columns for ordering.
// The templates will take care of ignoring columns.
assert!(row.column_count() >= self.len as i32);
self.templates
.iter()
.map(|ti| ti.lookup(&row))
.collect::<Result<Vec<TypedValue>>>()
}
fn combine(spec: Rc<FindSpec>, column_count: usize, elements: ProjectedElements) -> Result<CombinedProjection> {
let p = RelProjector::with_templates(spec, column_count, elements.templates);
// If every column yields only one value, or if this is an aggregate query
// (because by definition every column in an aggregate query is either
// aggregated or is a variable _upon which we group_), then don't bother
// with DISTINCT.
let already_distinct = elements.pre_aggregate_projection.is_some() ||
p.columns().all(|e| e.is_unit());
Ok(CombinedProjection {
sql_projection: elements.sql_projection,
pre_aggregate_projection: elements.pre_aggregate_projection,
datalog_projector: Box::new(p),
distinct: !already_distinct,
group_by_cols: elements.group_by,
})
}
}
impl Projector for RelProjector {
fn project<'stmt>(&self, mut rows: Rows<'stmt>) -> Result<QueryOutput> {
let mut out: Vec<Vec<TypedValue>> = vec![];
while let Some(r) = rows.next() {
let row = r?;
let bindings = self.collect_bindings(row)?;
out.push(bindings);
}
Ok(QueryOutput {
spec: self.spec.clone(),
results: QueryResults::Rel(out),
})
}
fn columns<'s>(&'s self) -> Box<Iterator<Item=&Element> + 's> {
self.spec.columns()
}
}
/// A coll projector produces a vector of values.
/// Each value is sourced from the same column.
struct CollProjector {
spec: Rc<FindSpec>,
template: TypedIndex,
}
impl CollProjector {
fn with_template(spec: Rc<FindSpec>, template: TypedIndex) -> CollProjector {
CollProjector {
spec: spec,
template: template,
}
}
fn combine(spec: Rc<FindSpec>, mut elements: ProjectedElements) -> Result<CombinedProjection> {
let template = elements.templates.pop().expect("Expected a single template");
let p = CollProjector::with_template(spec, template);
// If every column yields only one value, or if this is an aggregate query
// (because by definition every column in an aggregate query is either
// aggregated or is a variable _upon which we group_), then don't bother
// with DISTINCT.
let already_distinct = elements.pre_aggregate_projection.is_some() ||
p.columns().all(|e| e.is_unit());
Ok(CombinedProjection {
sql_projection: elements.sql_projection,
pre_aggregate_projection: elements.pre_aggregate_projection,
datalog_projector: Box::new(p),
distinct: !already_distinct,
group_by_cols: elements.group_by,
})
}
}
impl Projector for CollProjector {
fn project<'stmt>(&self, mut rows: Rows<'stmt>) -> Result<QueryOutput> {
let mut out: Vec<TypedValue> = vec![];
while let Some(r) = rows.next() {
let row = r?;
let binding = self.template.lookup(&row)?;
out.push(binding);
}
Ok(QueryOutput {
spec: self.spec.clone(),
results: QueryResults::Coll(out),
})
}
fn columns<'s>(&'s self) -> Box<Iterator<Item=&Element> + 's> {
self.spec.columns()
}
}
/// Combines the things you need to turn a query into SQL and turn its results into
/// `QueryResults`: SQL-related projection information (`DISTINCT`, columns, etc.) and
/// a Datalog projector that turns SQL into structures.
pub struct CombinedProjection {
/// A SQL projection, mapping columns mentioned in the body of the query to columns in the
/// output.
pub sql_projection: Projection,
/// If a query contains aggregates, we need to generate a nested subquery: an inner query
/// that returns our distinct variable bindings (and any `:with` vars), and an outer query
/// that applies aggregation. That's so we can put `DISTINCT` in the inner query and apply
/// aggregation afterwards -- `SELECT DISTINCT count(foo)` counts _then_ uniques, and we need
/// the opposite to implement Datalog distinct semantics.
/// If this is the case, `sql_projection` will be the outer query's projection list, and
/// `pre_aggregate_projection` will be the inner.
/// If the query doesn't use aggregation, this field will be `None`.
pub pre_aggregate_projection: Option<Projection>,
/// A Datalog projection. This consumes rows of the appropriate shape (as defined by
/// the SQL projection) to yield one of the four kinds of Datalog query result.
pub datalog_projector: Box<Projector>,
/// True if this query requires the SQL query to include DISTINCT.
pub distinct: bool,
// A list of column names to use as a GROUP BY clause.
pub group_by_cols: Vec<GroupBy>,
}
impl CombinedProjection {
fn flip_distinct_for_limit(mut self, limit: &Limit) -> Self {
if *limit == Limit::Fixed(1) {
self.distinct = false;
}
self
}
}
/// Compute a suitable SQL projection for an algebrized query.
/// This takes into account a number of things:
/// - The variable list in the find spec.
/// - The presence of any aggregate operations in the find spec. TODO: for now we only handle
/// simple variables
/// - The bindings established by the topmost CC.
/// - The types known at algebrizing time.
/// - The types extracted from the store for unknown attributes.
pub fn query_projection(query: &AlgebraicQuery) -> Result<Either<ConstantProjector, CombinedProjection>> {
use self::FindSpec::*;
let spec = query.find_spec.clone();
if query.is_fully_unit_bound() {
// Do a few gyrations to produce empty results of the right kind for the query.
let variables: BTreeSet<Variable> = spec.columns()
.map(|e| match e {
&Element::Variable(ref var) |
&Element::Corresponding(ref var) => var.clone(),
&Element::Aggregate(ref _agg) => {
// TODO: static computation of aggregates, then
// implement the condition in `is_fully_bound`.
unreachable!();
},
})
.collect();
// TODO: error handling
let results = QueryOutput::from_constants(&spec, query.cc.value_bindings(&variables));
let f = Box::new(move || {results.clone()});
Ok(Either::Left(ConstantProjector::new(spec, f)))
} else if query.is_known_empty() {
// Do a few gyrations to produce empty results of the right kind for the query.
let empty = QueryOutput::empty_factory(&spec);
Ok(Either::Left(ConstantProjector::new(spec, empty)))
} else {
match *query.find_spec {
FindColl(ref element) => {
let elements = project_elements(1, iter::once(element), query)?;
CollProjector::combine(spec, elements).map(|p| p.flip_distinct_for_limit(&query.limit))
},
FindScalar(ref element) => {
let elements = project_elements(1, iter::once(element), query)?;
ScalarProjector::combine(spec, elements)
},
FindRel(ref elements) => {
let column_count = query.find_spec.expected_column_count();
let elements = project_elements(column_count, elements, query)?;
RelProjector::combine(spec, column_count, elements).map(|p| p.flip_distinct_for_limit(&query.limit))
},
FindTuple(ref elements) => {
let column_count = query.find_spec.expected_column_count();
let elements = project_elements(column_count, elements, query)?;
TupleProjector::combine(spec, column_count, elements)
},
}.map(Either::Right)
}
}