* Add an IntelliJ section to gitignore
* Add Android SDK sample project which exercises mentat SDK
* Symlink libmentat_ffi.so in Android SDK to the generated --release files
* README files for Android SDK and mentat_ffi
* Include the namespace-separating solidus in NamespaceableName.
* Use type annotations when deciding how to process ambiguous ground input.
* Include simple patterns in the type extraction phase of pattern application. (#705)
* Review comment.
* Add a test.
`CacheDirection` enum is used only on the Android side to provide a usable interface. FFI calls are more explicit.
Tests ensure that a cached query is faster than the uncached one.
`CacheDirection` enum is used only on the Swift side to provide a usable interface. FFI calls are more explicit.
Tests ensure that a cached query is faster than the uncached one.
This exposes an FFI function for each direction of caching, `Forward`, `Reverse` and `Both`. This is to make is as clear as possible to consumers which direction they are caching their attributes in. The original implementation exposed the `CacheDirection` enum over FFI and it made mistakes very easy to make. This is more explicit and therefore less prone to error.
There are two ways to create each builder, directly from a `Store` or from an `InProgress`. Creating from `Store` will perform two actions, creating a new `InProgress` and then returning a builder from that `InProgress`. In the case of `store_entity_builder_with_entid` and `store_entity_builder_from_tempid`, the function goes a step further and calls `describe` or `describe_tempid` from the created `InProgressBuilder` and returning the `EntityBuilder` that results. These two functions are replicated on `InProgress`. This has been done to reduce the overhead of objects being passed over the FFI boundary.
The decision to do this enables us to go from something like
```
in_progress = store_begin_transaction(store);
builder = in_progress_builder(in_progress);
entity_builder = in_progress_builder_describe(builder, entid);
```
to
```
entity_builder = store_entity_builder_from_entid(store);
```
There is an `add_*` and `retract_*` function specified for each `TypedValue` type for both `InProgressBuilder` and `EntityBuilder`.
To enable `transact` on `EntityBuilder` and `InProgressBuilder`, a new `repr(C)` struct has been created that contains a pointer to an `InProgress` and a pointer to a `Result<TxReport>` to allow passing the tuple result returned from `transact` on those types over the FFI.
Commit is possible from both builders and `InProgress`.
* Part 3: Parameterize Entity by value type.
This isn't quite right, because after parsing, we shouldn't care
about` `edn::ValueAndSpan`, we should care only about edn::Value.
However, I think we can drop `ValueAndSpan` entirely if we just use
`rust-peg` (and its simpler error messages) rather than a mix of
`rust-peg` and `combine`.
In any case, this paves the way to transacting `Entity<TypedValue>`,
which is a nice step towards building general entities.
* Part 1: Add AttributePlace.
* Part 2: Name other places EntityPlace and ValuePlace.
Now we're consistent and closer to self-documenting. Both matter more
as we expose `Entity` as the thing to build for programmatic usage.
* Part 4: Allow Ident and TempId in ValuePlace.
The parser will never produce these, since determining whether an
integer/keyword or string is an ident or a tempid, respectively, in
the value place requires the schema.
But a builder that produces `Entity` instances directly will want to
produce these.
This should address #663, by re-inserting type checking in the
transactor stack after the entry point used by the term builder.
Before this commit, we were using an SQLite UNIQUE index to assert
that no `[e a]` pair, with `a` a cardinality one attribute, was
asserted more than once. However, that's not in line with Datomic,
which treats transaction inputs as a set and allows a single datom
like `[e a v]` to appear multiple times. It's both awkward and not
particularly efficient to look for _distinct_ repetitions in SQL, so
we accept some runtime cost in order to check for repetitions in the
transactor. This will allow us to address #532, which is really about
whether we treat inputs as sets. A side benefit is that we can
provide more helpful error messages when the transactor does detect
that the input truly violates the cardinality constraints of the
schema.
This commit builds a trie while error checking and collecting final
terms, which should be fairly efficient. It also allows a simpler
expression of input-provided :db/txInstant datoms, which in turn
uncovered a small issue with the transaction watcher, where-by the
watcher would not see non-input-provided :db/txInstant datoms.
This transition to Datomic-like input-as-set semantics allows us to
address #532. Previously, two tempids that upserted to the same entid
would produce duplicate datoms, and that would have been rejected by
the transactor -- correctly, since we did not allow duplicate datoms
under the input-as-list semantics. With input-as-set semantics,
duplicate datoms are allowed; and that means that we must allow
tempids to be equivalent, i.e., to resolve to the same tempid.
To achieve this, we:
- index the set of tempids
- identify tempid indices that share an upsert
- map tempids to a dense set of contiguous integer labels
We use the well-known union-find algorithm, as implemented by
petgraph, to efficiently manage the set of equivalent tempids.
Along the way, I've fixed and added tests for two small errors in the
transactor. First, don't drop datoms resolved by upsert (#679).
Second, ensure that complex upserts are allocated.
I don't know quite what happened here. The Clojure implementation
correctly kept complex upserts that hadn't resolved as complex
upserts (see
9a9dfb502a/src/common/datomish/transact.cljc (L436))
and then allocated complex upserts if they didn't resolve (see
9a9dfb502a/src/common/datomish/transact.cljc (L509)).
Based on the code comments, I think the Rust implementation must have
incorrectly tried to optimize by handling all complex upserts in at
most a single generation of evolution, and that's just not correct.
We're effectively implementing a topological sort, using very specific
domain knowledge, and its not true that a node in a topological sort
can be considered only once!
Documents the FFI layer for Mentat, and provides transaction functionality via an EDN string. Creates two native libraries for iOS (Swift) and Android (Java) and fully tests the FFI for both platforms.
Closes#619#614#611
* Make properties on NamespacedKeyword/NamespacedSymbol private
* Use only a single String for NamespacedKeyword/NamespacedSymbol
* Review comments.
* Remove unsafe code in namespaced_name.
Benchmarking shows approximately zero change.
* Allow the types of ns and name to differ when constructing a NamespacedName.
* Make symbol namespaces optional.
* Normalize names of keyword/symbol constructors.
This will make the subsequent refactor much less painful.
* Use expect not unwrap.
* Merge Keyword and NamespacedKeyword.
First, the parser had a small grouping bug where-by it wouldn't parse
Z as timezone correctly. Second, we weren't printing instants in the format
that we parse.
There are few reasons to do this:
- it's difficult to add symbol interning to combine-based parsers like
tx-parser -- literally every type changes to reflect the interner,
and that means every convenience macro we've built needs to chagne.
It's trivial to add interning to rust-peg-based parsers.
- combine has rolled forward to 3.2, and I spent a similar amount of
time investigating how to upgrade tx-parser (to take advantage of
the new parser! macros in combine that I think are necessary for
adapting to changing types) as I did just converting to rust-peg.
- it's easy to improve the error messages in rust-peg, where-as I have
tried twice to improve the nested error messages in combine and am
stumped.
- it's roughly 4x faster to parse strings directly as opposed to
edn::ValueAndSpan, and it'll be even better when we intern directly.
This is a stepping stone to transacting entities that are not based on
`edn::ValueAndSpan`. We need to turn some value places (general) into
entity places (restricted), and those restrictions are captured in
tx-parser right now. But for `TypedValue` value places, those
restrictions are encoded in the type itself. This lays the track to
accept other value types in value places, which is good for
programmatic builder interfaces.
We were forgetting to check for bound variables when resolving types other than ref types during inequality handling. This patch adds in the binding checks and `bails` if the bound variable is of the wrong type. #634
* Refactor AttributeCache populator code for use from pull.
* Pre: add to_value_rc to Cloned.
* Pre: add From<StructuredMap> for Binding.
* Pre: clarify Store::open_empty.
* Pre: StructuredMap cleanup.
* Pre: clean up a doc test.
* Split projector crate. Pass schema to projector.
* CLI support for printing bindings.
* Add and use ConjoiningClauses::derive_types_from_find_spec.
* Define pull types.
* Implement pull on top of the attribute cache layer.
* Add pull support to the projector.
* Parse pull expressions.
* Add simple pull support to connection objects.
* Tests for pull.
* Compile with Rust 1.25.
The only choice involved in this commit is that of replacing the
anonymous lifetime '_ with a named lifetime for the cache; since we're
accepting a Known, which includes the cache in question, I think it's
clear that we expect the function to apply to any given cache
lifetime.
* Review comments.
* Bail on unnamed attribute.
* Make assert_parse_failure_contains safe to use.
* Rework query parser to report better errors for pull.
* Test for mixed wildcard and simple attribute.
@mmacedoeu did a good deal of work to show that Arc instead of Rc
wasn't too difficult in #656, and @rnewman pushed the refactoring
across the line in #659. However, we didn't flip the switch at that
time. For #673, we'd like to include TypedValue instances in errors,
and with error-chain (and failure) error types need to be 'Sync +
'Send, so we need Arc.
This builds on #659 and should also finish #656.
This innocuous looking change (upserts_ev -> upserts_e -> resolved in
all situations, rather than upserts_ev -> resolved in some situations)
is a significant change in semantics and assumptions in the
transactor. Witness the large comment being removed about the same
tempid resolving in different generations!
To support this change, we provide more holistic errors for
conflicting upserts, which entails collecting some (relatively
expensive) diagnostic data.
I left in some debug logging, simply since it shouldn't hurt in
general, and will likely be useful for the next bug we see in the
transactor.
We don't yet have a logging system for production use, but I'd like to
start experimenting with log, which seems to be (close to) a Rust
standard. We're already using it in mentat_cli.
:db/tx (and Datomic's version, :datomic/tx) suffer from the same
ambiguities that [a v] lookup references do -- determining the type of
the result is context sensitive. (In this case, is :db/tx a reference
to the current transaction ID, or is it a valid keyword?) This commit
addresses the ambiguity by introducing a notion of a transaction
functions, and provides a little scaffolding for adding more (should
the need arise). I left the scaffolding in place rather than handling
just (transaction-tx) because I started trying to
implement (transaction-instant) as well, which is more difficult --
see the comments.
It's worth noting that this approach generalizes more or less directly
to ?input variables, since those can be eagerly bound like the
implemented transaction function (transaction-tx).
* Pre: eliminate some occurrences of Rc, largely through the magic of Into.
* Pre: introduce FromRc to convert between refcounted types.
* Introduce ValueRc as an abstraction over Rc/Arc choice.
* Move Cloned to core.
* Move CString-creation methods to TypedValue.
* Finish transition.
* Pre: clean up core/src/lib.rs.
* Pre: use indexmap 1.0 in db and query-projector.
* Change rel results to be a RelResult instance, not a Vec<Vec<TypedValue>>.
This avoids memory fragmentation and improves locality by using a single
heap-allocated vector for all bindings, rather than a separate
heap-allocated vector for each row.
We hide this abstraction behind the `RelResult` type, which tracks the
stride length (width) of each row.
* Don't allocate temporary vectors when projecting RelResults.
`tx-ids` allows to enumerate transaction IDs efficiently.
`tx-data` allows to extract transaction log data efficiently.
We might eventually allow to filter by impacted attribute sets as well.