Trait itertools::Itertools
[−]
[src]
pub trait Itertools: Iterator { fn interleave<J>(self, other: J) -> Interleave<Self, J::IntoIter>
where
J: IntoIterator<Item = Self::Item>,
Self: Sized, { ... } fn interleave_shortest<J>(
self,
other: J
) -> InterleaveShortest<Self, J::IntoIter>
where
J: IntoIterator<Item = Self::Item>,
Self: Sized, { ... } fn intersperse(self, element: Self::Item) -> Intersperse<Self>
where
Self: Sized,
Self::Item: Clone, { ... } fn zip_longest<J>(self, other: J) -> ZipLongest<Self, J::IntoIter>
where
J: IntoIterator,
Self: Sized, { ... } fn zip_eq<J>(self, other: J) -> ZipEq<Self, J::IntoIter>
where
J: IntoIterator,
Self: Sized, { ... } fn batching<B, F>(self, f: F) -> Batching<Self, F>
where
F: FnMut(&mut Self) -> Option<B>,
Self: Sized, { ... } fn group_by<K, F>(self, key: F) -> GroupBy<K, Self, F>
where
Self: Sized,
F: FnMut(&Self::Item) -> K,
K: PartialEq, { ... } fn chunks(self, size: usize) -> IntoChunks<Self>
where
Self: Sized, { ... } fn tuple_windows<T>(self) -> TupleWindows<Self, T>
where
Self: Sized + Iterator<Item = T::Item>,
T: TupleCollect,
T::Item: Clone, { ... } fn tuples<T>(self) -> Tuples<Self, T>
where
Self: Sized + Iterator<Item = T::Item>,
T: TupleCollect, { ... } fn tee(self) -> (Tee<Self>, Tee<Self>)
where
Self: Sized,
Self::Item: Clone, { ... } fn step(self, n: usize) -> Step<Self>
where
Self: Sized, { ... } fn map_results<F, T, U, E>(self, f: F) -> MapResults<Self, F>
where
Self: Iterator<Item = Result<T, E>> + Sized,
F: FnMut(T) -> U, { ... } fn merge<J>(self, other: J) -> Merge<Self, J::IntoIter>
where
Self: Sized,
Self::Item: PartialOrd,
J: IntoIterator<Item = Self::Item>, { ... } fn merge_by<J, F>(
self,
other: J,
is_first: F
) -> MergeBy<Self, J::IntoIter, F>
where
Self: Sized,
J: IntoIterator<Item = Self::Item>,
F: FnMut(&Self::Item, &Self::Item) -> bool, { ... } fn merge_join_by<J, F>(
self,
other: J,
cmp_fn: F
) -> MergeJoinBy<Self, J::IntoIter, F>
where
J: IntoIterator,
F: FnMut(&Self::Item, &J::Item) -> Ordering,
Self: Sized, { ... } fn kmerge(self) -> KMerge<<Self::Item as IntoIterator>::IntoIter>
where
Self: Sized,
Self::Item: IntoIterator,
<Self::Item as IntoIterator>::Item: PartialOrd, { ... } fn kmerge_by<F>(
self,
first: F
) -> KMergeBy<<Self::Item as IntoIterator>::IntoIter, F>
where
Self: Sized,
Self::Item: IntoIterator,
F: FnMut(&<Self::Item as IntoIterator>::Item, &<Self::Item as IntoIterator>::Item) -> bool, { ... } fn cartesian_product<J>(self, other: J) -> Product<Self, J::IntoIter>
where
Self: Sized,
Self::Item: Clone,
J: IntoIterator,
J::IntoIter: Clone, { ... } fn multi_cartesian_product(
self
) -> MultiProduct<<Self::Item as IntoIterator>::IntoIter>
where
Self: Iterator + Sized,
Self::Item: IntoIterator,
<Self::Item as IntoIterator>::IntoIter: Clone,
<Self::Item as IntoIterator>::Item: Clone, { ... } fn coalesce<F>(self, f: F) -> Coalesce<Self, F>
where
Self: Sized,
F: FnMut(Self::Item, Self::Item) -> Result<Self::Item, (Self::Item, Self::Item)>, { ... } fn dedup(self) -> Dedup<Self>
where
Self: Sized,
Self::Item: PartialEq, { ... } fn unique(self) -> Unique<Self>
where
Self: Sized,
Self::Item: Clone + Eq + Hash, { ... } fn unique_by<V, F>(self, f: F) -> UniqueBy<Self, V, F>
where
Self: Sized,
V: Eq + Hash,
F: FnMut(&Self::Item) -> V, { ... } fn peeking_take_while<F>(&mut self, accept: F) -> PeekingTakeWhile<Self, F>
where
Self: Sized + PeekingNext,
F: FnMut(&Self::Item) -> bool, { ... } fn take_while_ref<F>(&mut self, accept: F) -> TakeWhileRef<Self, F>
where
Self: Clone,
F: FnMut(&Self::Item) -> bool, { ... } fn while_some<A>(self) -> WhileSome<Self>
where
Self: Sized + Iterator<Item = Option<A>>, { ... } fn tuple_combinations<T>(self) -> TupleCombinations<Self, T>
where
Self: Sized + Clone,
Self::Item: Clone,
T: HasCombination<Self>, { ... } fn combinations(self, n: usize) -> Combinations<Self>
where
Self: Sized,
Self::Item: Clone, { ... } fn pad_using<F>(self, min: usize, f: F) -> PadUsing<Self, F>
where
Self: Sized,
F: FnMut(usize) -> Self::Item, { ... } fn flatten(self) -> Flatten<Self, <Self::Item as IntoIterator>::IntoIter>
where
Self: Sized,
Self::Item: IntoIterator, { ... } fn with_position(self) -> WithPosition<Self>
where
Self: Sized, { ... } fn positions<P>(self, predicate: P) -> Positions<Self, P>
where
Self: Sized,
P: FnMut(Self::Item) -> bool, { ... } fn update<F>(self, updater: F) -> Update<Self, F>
where
Self: Sized,
F: FnMut(&mut Self::Item), { ... } fn next_tuple<T>(&mut self) -> Option<T>
where
Self: Sized + Iterator<Item = T::Item>,
T: TupleCollect, { ... } fn collect_tuple<T>(self) -> Option<T>
where
Self: Sized + Iterator<Item = T::Item>,
T: TupleCollect, { ... } fn find_position<P>(&mut self, pred: P) -> Option<(usize, Self::Item)>
where
P: FnMut(&Self::Item) -> bool, { ... } fn all_equal(&mut self) -> bool
where
Self::Item: PartialEq, { ... } fn dropping(self, n: usize) -> Self
where
Self: Sized, { ... } fn dropping_back(self, n: usize) -> Self
where
Self: Sized,
Self: DoubleEndedIterator, { ... } fn foreach<F>(self, f: F)
where
F: FnMut(Self::Item),
Self: Sized, { ... } fn concat(self) -> Self::Item
where
Self: Sized,
Self::Item: Extend<<Self::Item as IntoIterator>::Item> + IntoIterator + Default, { ... } fn collect_vec(self) -> Vec<Self::Item>
where
Self: Sized, { ... } fn set_from<'a, A: 'a, J>(&mut self, from: J) -> usize
where
Self: Iterator<Item = &'a mut A>,
J: IntoIterator<Item = A>, { ... } fn join(&mut self, sep: &str) -> String
where
Self::Item: Display, { ... } fn format(self, sep: &str) -> Format<Self>
where
Self: Sized, { ... } fn format_with<F>(self, sep: &str, format: F) -> FormatWith<Self, F>
where
Self: Sized,
F: FnMut(Self::Item, &mut FnMut(&Display) -> Result) -> Result, { ... } fn fold_results<A, E, B, F>(&mut self, start: B, f: F) -> Result<B, E>
where
Self: Iterator<Item = Result<A, E>>,
F: FnMut(B, A) -> B, { ... } fn fold_options<A, B, F>(&mut self, start: B, f: F) -> Option<B>
where
Self: Iterator<Item = Option<A>>,
F: FnMut(B, A) -> B, { ... } fn fold1<F>(self, f: F) -> Option<Self::Item>
where
F: FnMut(Self::Item, Self::Item) -> Self::Item,
Self: Sized, { ... } fn tree_fold1<F>(self, f: F) -> Option<Self::Item>
where
F: FnMut(Self::Item, Self::Item) -> Self::Item,
Self: Sized, { ... } fn fold_while<B, F>(&mut self, init: B, f: F) -> FoldWhile<B>
where
Self: Sized,
F: FnMut(B, Self::Item) -> FoldWhile<B>, { ... } fn sorted(self) -> Vec<Self::Item>
where
Self: Sized,
Self::Item: Ord, { ... } fn sorted_by<F>(self, cmp: F) -> Vec<Self::Item>
where
Self: Sized,
F: FnMut(&Self::Item, &Self::Item) -> Ordering, { ... } fn sorted_by_key<K, F>(self, f: F) -> Vec<Self::Item>
where
Self: Sized,
K: Ord,
F: FnMut(&Self::Item) -> K, { ... } fn partition_map<A, B, F, L, R>(self, predicate: F) -> (A, B)
where
Self: Sized,
F: Fn(Self::Item) -> Either<L, R>,
A: Default + Extend<L>,
B: Default + Extend<R>, { ... } fn into_group_map<K, V>(self) -> HashMap<K, Vec<V>>
where
Self: Iterator<Item = (K, V)> + Sized,
K: Hash + Eq, { ... } fn minmax(self) -> MinMaxResult<Self::Item>
where
Self: Sized,
Self::Item: PartialOrd, { ... } fn minmax_by_key<K, F>(self, key: F) -> MinMaxResult<Self::Item>
where
Self: Sized,
K: PartialOrd,
F: FnMut(&Self::Item) -> K, { ... } fn minmax_by<F>(self, compare: F) -> MinMaxResult<Self::Item>
where
Self: Sized,
F: FnMut(&Self::Item, &Self::Item) -> Ordering, { ... } }
The trait Itertools
: extra iterator adaptors and methods for iterators.
This trait defines a number of methods. They are divided into two groups:
-
Adaptors take an iterator and parameter as input, and return a new iterator value. These are listed first in the trait. An example of an adaptor is
.interleave()
-
Regular methods are those that don't return iterators and instead return a regular value of some other kind.
.next_tuple()
is an example and the first regular method in the list.
Provided Methods
fn interleave<J>(self, other: J) -> Interleave<Self, J::IntoIter> where
J: IntoIterator<Item = Self::Item>,
Self: Sized,
J: IntoIterator<Item = Self::Item>,
Self: Sized,
Alternate elements from two iterators until both have run out.
Iterator element type is Self::Item
.
This iterator is fused.
use itertools::Itertools; let it = (1..7).interleave(vec![-1, -2]); itertools::assert_equal(it, vec![1, -1, 2, -2, 3, 4, 5, 6]);
fn interleave_shortest<J>(
self,
other: J
) -> InterleaveShortest<Self, J::IntoIter> where
J: IntoIterator<Item = Self::Item>,
Self: Sized,
self,
other: J
) -> InterleaveShortest<Self, J::IntoIter> where
J: IntoIterator<Item = Self::Item>,
Self: Sized,
Alternate elements from two iterators until at least one of them has run out.
Iterator element type is Self::Item
.
use itertools::Itertools; let it = (1..7).interleave_shortest(vec![-1, -2]); itertools::assert_equal(it, vec![1, -1, 2, -2, 3]);
fn intersperse(self, element: Self::Item) -> Intersperse<Self> where
Self: Sized,
Self::Item: Clone,
Self: Sized,
Self::Item: Clone,
An iterator adaptor to insert a particular value between each element of the adapted iterator.
Iterator element type is Self::Item
.
This iterator is fused.
use itertools::Itertools; itertools::assert_equal((0..3).intersperse(8), vec![0, 8, 1, 8, 2]);
fn zip_longest<J>(self, other: J) -> ZipLongest<Self, J::IntoIter> where
J: IntoIterator,
Self: Sized,
J: IntoIterator,
Self: Sized,
Create an iterator which iterates over both this and the specified iterator simultaneously, yielding pairs of two optional elements.
This iterator is fused.
As long as neither input iterator is exhausted yet, it yields two values
via EitherOrBoth::Both
.
When the parameter iterator is exhausted, it only yields a value from the
self
iterator via EitherOrBoth::Left
.
When the self
iterator is exhausted, it only yields a value from the
parameter iterator via EitherOrBoth::Right
.
When both iterators return None
, all further invocations of .next()
will return None
.
Iterator element type is
EitherOrBoth<Self::Item, J::Item>
.
use itertools::EitherOrBoth::{Both, Right}; use itertools::Itertools; let it = (0..1).zip_longest(1..3); itertools::assert_equal(it, vec![Both(0, 1), Right(2)]);
fn zip_eq<J>(self, other: J) -> ZipEq<Self, J::IntoIter> where
J: IntoIterator,
Self: Sized,
J: IntoIterator,
Self: Sized,
Create an iterator which iterates over both this and the specified iterator simultaneously, yielding pairs of elements.
Panics if the iterators reach an end and they are not of equal lengths.
fn batching<B, F>(self, f: F) -> Batching<Self, F> where
F: FnMut(&mut Self) -> Option<B>,
Self: Sized,
F: FnMut(&mut Self) -> Option<B>,
Self: Sized,
A “meta iterator adaptor”. Its closure recives a reference to the iterator and may pick off as many elements as it likes, to produce the next iterator element.
Iterator element type is B
.
use itertools::Itertools; // An adaptor that gathers elements in pairs let pit = (0..4).batching(|it| { match it.next() { None => None, Some(x) => match it.next() { None => None, Some(y) => Some((x, y)), } } }); itertools::assert_equal(pit, vec![(0, 1), (2, 3)]);
fn group_by<K, F>(self, key: F) -> GroupBy<K, Self, F> where
Self: Sized,
F: FnMut(&Self::Item) -> K,
K: PartialEq,
Self: Sized,
F: FnMut(&Self::Item) -> K,
K: PartialEq,
Return an iterable that can group iterator elements. Consecutive elements that map to the same key (“runs”), are assigned to the same group.
GroupBy
is the storage for the lazy grouping operation.
If the groups are consumed in order, or if each group's iterator is
dropped without keeping it around, then GroupBy
uses no
allocations. It needs allocations only if several group iterators
are alive at the same time.
This type implements IntoIterator
(it is not an iterator
itself), because the group iterators need to borrow from this
value. It should be stored in a local variable or temporary and
iterated.
Iterator element type is (K, Group)
: the group's key and the
group iterator.
use itertools::Itertools; // group data into runs of larger than zero or not. let data = vec![1, 3, -2, -2, 1, 0, 1, 2]; // groups: |---->|------>|--------->| // Note: The `&` is significant here, `GroupBy` is iterable // only by reference. You can also call `.into_iter()` explicitly. for (key, group) in &data.into_iter().group_by(|elt| *elt >= 0) { // Check that the sum of each group is +/- 4. assert_eq!(4, group.sum::<i32>().abs()); }
fn chunks(self, size: usize) -> IntoChunks<Self> where
Self: Sized,
Self: Sized,
Return an iterable that can chunk the iterator.
Yield subiterators (chunks) that each yield a fixed number elements,
determined by size
. The last chunk will be shorter if there aren't
enough elements.
IntoChunks
is based on GroupBy
: it is iterable (implements
IntoIterator
, not Iterator
), and it only buffers if several
chunk iterators are alive at the same time.
Iterator element type is Chunk
, each chunk's iterator.
Panics if size
is 0.
use itertools::Itertools; let data = vec![1, 1, 2, -2, 6, 0, 3, 1]; //chunk size=3 |------->|-------->|--->| // Note: The `&` is significant here, `IntoChunks` is iterable // only by reference. You can also call `.into_iter()` explicitly. for chunk in &data.into_iter().chunks(3) { // Check that the sum of each chunk is 4. assert_eq!(4, chunk.sum()); }
fn tuple_windows<T>(self) -> TupleWindows<Self, T> where
Self: Sized + Iterator<Item = T::Item>,
T: TupleCollect,
T::Item: Clone,
Self: Sized + Iterator<Item = T::Item>,
T: TupleCollect,
T::Item: Clone,
Return an iterator over all contiguous windows producing tuples of a specific size (up to 4).
tuple_windows
clones the iterator elements so that they can be
part of successive windows, this makes it most suited for iterators
of references and other values that are cheap to copy.
use itertools::Itertools; let mut v = Vec::new(); for (a, b) in (1..5).tuple_windows() { v.push((a, b)); } assert_eq!(v, vec![(1, 2), (2, 3), (3, 4)]); let mut it = (1..5).tuple_windows(); assert_eq!(Some((1, 2, 3)), it.next()); assert_eq!(Some((2, 3, 4)), it.next()); assert_eq!(None, it.next()); // this requires a type hint let it = (1..5).tuple_windows::<(_, _, _)>(); itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4)]); // you can also specify the complete type use itertools::TupleWindows; use std::ops::Range; let it: TupleWindows<Range<u32>, (u32, u32, u32)> = (1..5).tuple_windows(); itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4)]);
fn tuples<T>(self) -> Tuples<Self, T> where
Self: Sized + Iterator<Item = T::Item>,
T: TupleCollect,
Self: Sized + Iterator<Item = T::Item>,
T: TupleCollect,
Return an iterator that groups the items in tuples of a specific size (up to 4).
See also the method .next_tuple()
.
use itertools::Itertools; let mut v = Vec::new(); for (a, b) in (1..5).tuples() { v.push((a, b)); } assert_eq!(v, vec![(1, 2), (3, 4)]); let mut it = (1..7).tuples(); assert_eq!(Some((1, 2, 3)), it.next()); assert_eq!(Some((4, 5, 6)), it.next()); assert_eq!(None, it.next()); // this requires a type hint let it = (1..7).tuples::<(_, _, _)>(); itertools::assert_equal(it, vec![(1, 2, 3), (4, 5, 6)]); // you can also specify the complete type use itertools::Tuples; use std::ops::Range; let it: Tuples<Range<u32>, (u32, u32, u32)> = (1..7).tuples(); itertools::assert_equal(it, vec![(1, 2, 3), (4, 5, 6)]);
See also Tuples::into_buffer
.
fn tee(self) -> (Tee<Self>, Tee<Self>) where
Self: Sized,
Self::Item: Clone,
Self: Sized,
Self::Item: Clone,
Split into an iterator pair that both yield all elements from the original iterator.
Note: If the iterator is clonable, prefer using that instead of using this method. It is likely to be more efficient.
Iterator element type is Self::Item
.
use itertools::Itertools; let xs = vec![0, 1, 2, 3]; let (mut t1, t2) = xs.into_iter().tee(); itertools::assert_equal(t1.next(), Some(0)); itertools::assert_equal(t2, 0..4); itertools::assert_equal(t1, 1..4);
fn step(self, n: usize) -> Step<Self> where
Self: Sized,
Self: Sized,
Return an iterator adaptor that steps n
elements in the base iterator
for each iteration.
The iterator steps by yielding the next element from the base iterator,
then skipping forward n - 1
elements.
Iterator element type is Self::Item
.
Panics if the step is 0.
use itertools::Itertools; let it = (0..8).step(3); itertools::assert_equal(it, vec![0, 3, 6]);
fn map_results<F, T, U, E>(self, f: F) -> MapResults<Self, F> where
Self: Iterator<Item = Result<T, E>> + Sized,
F: FnMut(T) -> U,
Self: Iterator<Item = Result<T, E>> + Sized,
F: FnMut(T) -> U,
Return an iterator adaptor that applies the provided closure
to every Result::Ok
value. Result::Err
values are
unchanged.
use itertools::Itertools; let input = vec![Ok(41), Err(false), Ok(11)]; let it = input.into_iter().map_results(|i| i + 1); itertools::assert_equal(it, vec![Ok(42), Err(false), Ok(12)]);
fn merge<J>(self, other: J) -> Merge<Self, J::IntoIter> where
Self: Sized,
Self::Item: PartialOrd,
J: IntoIterator<Item = Self::Item>,
Self: Sized,
Self::Item: PartialOrd,
J: IntoIterator<Item = Self::Item>,
Return an iterator adaptor that merges the two base iterators in ascending order. If both base iterators are sorted (ascending), the result is sorted.
Iterator element type is Self::Item
.
use itertools::Itertools; let a = (0..11).step(3); let b = (0..11).step(5); let it = a.merge(b); itertools::assert_equal(it, vec![0, 0, 3, 5, 6, 9, 10]);
fn merge_by<J, F>(self, other: J, is_first: F) -> MergeBy<Self, J::IntoIter, F> where
Self: Sized,
J: IntoIterator<Item = Self::Item>,
F: FnMut(&Self::Item, &Self::Item) -> bool,
Self: Sized,
J: IntoIterator<Item = Self::Item>,
F: FnMut(&Self::Item, &Self::Item) -> bool,
Return an iterator adaptor that merges the two base iterators in order.
This is much like .merge()
but allows for a custom ordering.
This can be especially useful for sequences of tuples.
Iterator element type is Self::Item
.
use itertools::Itertools; let a = (0..).zip("bc".chars()); let b = (0..).zip("ad".chars()); let it = a.merge_by(b, |x, y| x.1 <= y.1); itertools::assert_equal(it, vec![(0, 'a'), (0, 'b'), (1, 'c'), (1, 'd')]);
fn merge_join_by<J, F>(
self,
other: J,
cmp_fn: F
) -> MergeJoinBy<Self, J::IntoIter, F> where
J: IntoIterator,
F: FnMut(&Self::Item, &J::Item) -> Ordering,
Self: Sized,
self,
other: J,
cmp_fn: F
) -> MergeJoinBy<Self, J::IntoIter, F> where
J: IntoIterator,
F: FnMut(&Self::Item, &J::Item) -> Ordering,
Self: Sized,
Create an iterator that merges items from both this and the specified iterator in ascending order.
It chooses whether to pair elements based on the Ordering
returned by the
specified compare function. At any point, inspecting the tip of the
iterators I
and J
as items i
of type I::Item
and j
of type
J::Item
respectively, the resulting iterator will:
- Emit
EitherOrBoth::Left(i)
wheni < j
, and removei
from its source iterator - Emit
EitherOrBoth::Right(j)
wheni > j
, and removej
from its source iterator - Emit
EitherOrBoth::Both(i, j)
wheni == j
, and remove bothi
andj
from their respective source iterators
use itertools::Itertools; use itertools::EitherOrBoth::{Left, Right, Both}; let ki = (0..10).step(3); let ku = (0..10).step(5); let ki_ku = ki.merge_join_by(ku, |i, j| i.cmp(j)).map(|either| { match either { Left(_) => "Ki", Right(_) => "Ku", Both(_, _) => "KiKu" } }); itertools::assert_equal(ki_ku, vec!["KiKu", "Ki", "Ku", "Ki", "Ki"]);
fn kmerge(self) -> KMerge<<Self::Item as IntoIterator>::IntoIter> where
Self: Sized,
Self::Item: IntoIterator,
<Self::Item as IntoIterator>::Item: PartialOrd,
Self: Sized,
Self::Item: IntoIterator,
<Self::Item as IntoIterator>::Item: PartialOrd,
Return an iterator adaptor that flattens an iterator of iterators by merging them in ascending order.
If all base iterators are sorted (ascending), the result is sorted.
Iterator element type is Self::Item
.
use itertools::Itertools; let a = (0..6).step(3); let b = (1..6).step(3); let c = (2..6).step(3); let it = vec![a, b, c].into_iter().kmerge(); itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 5]);
fn kmerge_by<F>(
self,
first: F
) -> KMergeBy<<Self::Item as IntoIterator>::IntoIter, F> where
Self: Sized,
Self::Item: IntoIterator,
F: FnMut(&<Self::Item as IntoIterator>::Item, &<Self::Item as IntoIterator>::Item) -> bool,
self,
first: F
) -> KMergeBy<<Self::Item as IntoIterator>::IntoIter, F> where
Self: Sized,
Self::Item: IntoIterator,
F: FnMut(&<Self::Item as IntoIterator>::Item, &<Self::Item as IntoIterator>::Item) -> bool,
Return an iterator adaptor that flattens an iterator of iterators by merging them according to the given closure.
The closure first
is called with two elements a, b and should
return true
if a is ordered before b.
If all base iterators are sorted according to first
, the result is
sorted.
Iterator element type is Self::Item
.
use itertools::Itertools; let a = vec![-1f64, 2., 3., -5., 6., -7.]; let b = vec![0., 2., -4.]; let mut it = vec![a, b].into_iter().kmerge_by(|a, b| a.abs() < b.abs()); assert_eq!(it.next(), Some(0.)); assert_eq!(it.last(), Some(-7.));
fn cartesian_product<J>(self, other: J) -> Product<Self, J::IntoIter> where
Self: Sized,
Self::Item: Clone,
J: IntoIterator,
J::IntoIter: Clone,
Self: Sized,
Self::Item: Clone,
J: IntoIterator,
J::IntoIter: Clone,
Return an iterator adaptor that iterates over the cartesian product of
the element sets of two iterators self
and J
.
Iterator element type is (Self::Item, J::Item)
.
use itertools::Itertools; let it = (0..2).cartesian_product("αβ".chars()); itertools::assert_equal(it, vec![(0, 'α'), (0, 'β'), (1, 'α'), (1, 'β')]);
fn multi_cartesian_product(
self
) -> MultiProduct<<Self::Item as IntoIterator>::IntoIter> where
Self: Iterator + Sized,
Self::Item: IntoIterator,
<Self::Item as IntoIterator>::IntoIter: Clone,
<Self::Item as IntoIterator>::Item: Clone,
self
) -> MultiProduct<<Self::Item as IntoIterator>::IntoIter> where
Self: Iterator + Sized,
Self::Item: IntoIterator,
<Self::Item as IntoIterator>::IntoIter: Clone,
<Self::Item as IntoIterator>::Item: Clone,
Return an iterator adaptor that iterates over the cartesian product of
all subiterators returned by meta-iterator self
.
All provided iterators must yield the same Item
type. To generate
the product of iterators yielding multiple types, use the
iproduct
macro instead.
The iterator element type is Vec<T>
, where T
is the iterator element
of the subiterators.
use itertools::Itertools; let mut multi_prod = (0..3).map(|i| (i * 2)..(i * 2 + 2)) .multi_cartesian_product(); assert_eq!(multi_prod.next(), Some(vec![0, 2, 4])); assert_eq!(multi_prod.next(), Some(vec![0, 2, 5])); assert_eq!(multi_prod.next(), Some(vec![0, 3, 4])); assert_eq!(multi_prod.next(), Some(vec![0, 3, 5])); assert_eq!(multi_prod.next(), Some(vec![1, 2, 4])); assert_eq!(multi_prod.next(), Some(vec![1, 2, 5])); assert_eq!(multi_prod.next(), Some(vec![1, 3, 4])); assert_eq!(multi_prod.next(), Some(vec![1, 3, 5])); assert_eq!(multi_prod.next(), None);
fn coalesce<F>(self, f: F) -> Coalesce<Self, F> where
Self: Sized,
F: FnMut(Self::Item, Self::Item) -> Result<Self::Item, (Self::Item, Self::Item)>,
Self: Sized,
F: FnMut(Self::Item, Self::Item) -> Result<Self::Item, (Self::Item, Self::Item)>,
Return an iterator adaptor that uses the passed-in closure to optionally merge together consecutive elements.
The closure f
is passed two elements, previous
and current
and may
return either (1) Ok(combined)
to merge the two values or
(2) Err((previous', current'))
to indicate they can't be merged.
In (2), the value previous'
is emitted by the iterator.
Either (1) combined
or (2) current'
becomes the previous value
when coalesce continues with the next pair of elements to merge. The
value that remains at the end is also emitted by the iterator.
Iterator element type is Self::Item
.
This iterator is fused.
use itertools::Itertools; // sum same-sign runs together let data = vec![-1., -2., -3., 3., 1., 0., -1.]; itertools::assert_equal(data.into_iter().coalesce(|x, y| if (x >= 0.) == (y >= 0.) { Ok(x + y) } else { Err((x, y)) }), vec![-6., 4., -1.]);
fn dedup(self) -> Dedup<Self> where
Self: Sized,
Self::Item: PartialEq,
Self: Sized,
Self::Item: PartialEq,
Remove duplicates from sections of consecutive identical elements. If the iterator is sorted, all elements will be unique.
Iterator element type is Self::Item
.
This iterator is fused.
use itertools::Itertools; let data = vec![1., 1., 2., 3., 3., 2., 2.]; itertools::assert_equal(data.into_iter().dedup(), vec![1., 2., 3., 2.]);
fn unique(self) -> Unique<Self> where
Self: Sized,
Self::Item: Clone + Eq + Hash,
Self: Sized,
Self::Item: Clone + Eq + Hash,
Return an iterator adaptor that filters out elements that have already been produced once during the iteration. Duplicates are detected using hash and equality.
Clones of visited elements are stored in a hash set in the iterator.
use itertools::Itertools; let data = vec![10, 20, 30, 20, 40, 10, 50]; itertools::assert_equal(data.into_iter().unique(), vec![10, 20, 30, 40, 50]);
fn unique_by<V, F>(self, f: F) -> UniqueBy<Self, V, F> where
Self: Sized,
V: Eq + Hash,
F: FnMut(&Self::Item) -> V,
Self: Sized,
V: Eq + Hash,
F: FnMut(&Self::Item) -> V,
Return an iterator adaptor that filters out elements that have already been produced once during the iteration.
Duplicates are detected by comparing the key they map to
with the keying function f
by hash and equality.
The keys are stored in a hash set in the iterator.
use itertools::Itertools; let data = vec!["a", "bb", "aa", "c", "ccc"]; itertools::assert_equal(data.into_iter().unique_by(|s| s.len()), vec!["a", "bb", "ccc"]);
fn peeking_take_while<F>(&mut self, accept: F) -> PeekingTakeWhile<Self, F> where
Self: Sized + PeekingNext,
F: FnMut(&Self::Item) -> bool,
Self: Sized + PeekingNext,
F: FnMut(&Self::Item) -> bool,
Return an iterator adaptor that borrows from this iterator and
takes items while the closure accept
returns true
.
This adaptor can only be used on iterators that implement PeekingNext
like .peekable()
, put_back
and a few other collection iterators.
The last and rejected element (first false
) is still available when
peeking_take_while
is done.
See also .take_while_ref()
which is a similar adaptor.
fn take_while_ref<F>(&mut self, accept: F) -> TakeWhileRef<Self, F> where
Self: Clone,
F: FnMut(&Self::Item) -> bool,
Self: Clone,
F: FnMut(&Self::Item) -> bool,
Return an iterator adaptor that borrows from a Clone
-able iterator
to only pick off elements while the predicate accept
returns true
.
It uses the Clone
trait to restore the original iterator so that the
last and rejected element (first false
) is still available when
take_while_ref
is done.
use itertools::Itertools; let mut hexadecimals = "0123456789abcdef".chars(); let decimals = hexadecimals.take_while_ref(|c| c.is_numeric()) .collect::<String>(); assert_eq!(decimals, "0123456789"); assert_eq!(hexadecimals.next(), Some('a'));
fn while_some<A>(self) -> WhileSome<Self> where
Self: Sized + Iterator<Item = Option<A>>,
Self: Sized + Iterator<Item = Option<A>>,
Return an iterator adaptor that filters Option<A>
iterator elements
and produces A
. Stops on the first None
encountered.
Iterator element type is A
, the unwrapped element.
use itertools::Itertools; // List all hexadecimal digits itertools::assert_equal( (0..).map(|i| std::char::from_digit(i, 16)).while_some(), "0123456789abcdef".chars());
fn tuple_combinations<T>(self) -> TupleCombinations<Self, T> where
Self: Sized + Clone,
Self::Item: Clone,
T: HasCombination<Self>,
Self: Sized + Clone,
Self::Item: Clone,
T: HasCombination<Self>,
Return an iterator adaptor that iterates over the combinations of the elements from an iterator.
Iterator element can be any homogeneous tuple of type Self::Item
with
size up to 4.
use itertools::Itertools; let mut v = Vec::new(); for (a, b) in (1..5).tuple_combinations() { v.push((a, b)); } assert_eq!(v, vec![(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]); let mut it = (1..5).tuple_combinations(); assert_eq!(Some((1, 2, 3)), it.next()); assert_eq!(Some((1, 2, 4)), it.next()); assert_eq!(Some((1, 3, 4)), it.next()); assert_eq!(Some((2, 3, 4)), it.next()); assert_eq!(None, it.next()); // this requires a type hint let it = (1..5).tuple_combinations::<(_, _, _)>(); itertools::assert_equal(it, vec![(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]); // you can also specify the complete type use itertools::TupleCombinations; use std::ops::Range; let it: TupleCombinations<Range<u32>, (u32, u32, u32)> = (1..5).tuple_combinations(); itertools::assert_equal(it, vec![(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]);
fn combinations(self, n: usize) -> Combinations<Self> where
Self: Sized,
Self::Item: Clone,
Self: Sized,
Self::Item: Clone,
Return an iterator adaptor that iterates over the n
-length combinations of
the elements from an iterator.
Iterator element type is Vec<Self::Item>
. The iterator produces a new Vec per iteration,
and clones the iterator elements.
use itertools::Itertools; let it = (1..5).combinations(3); itertools::assert_equal(it, vec![ vec![1, 2, 3], vec![1, 2, 4], vec![1, 3, 4], vec![2, 3, 4], ]);
fn pad_using<F>(self, min: usize, f: F) -> PadUsing<Self, F> where
Self: Sized,
F: FnMut(usize) -> Self::Item,
Self: Sized,
F: FnMut(usize) -> Self::Item,
Return an iterator adaptor that pads the sequence to a minimum length of
min
by filling missing elements using a closure f
.
Iterator element type is Self::Item
.
use itertools::Itertools; let it = (0..5).pad_using(10, |i| 2*i); itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 10, 12, 14, 16, 18]); let it = (0..10).pad_using(5, |i| 2*i); itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]); let it = (0..5).pad_using(10, |i| 2*i).rev(); itertools::assert_equal(it, vec![18, 16, 14, 12, 10, 4, 3, 2, 1, 0]);
fn flatten(self) -> Flatten<Self, <Self::Item as IntoIterator>::IntoIter> where
Self: Sized,
Self::Item: IntoIterator,
Self: Sized,
Self::Item: IntoIterator,
Flatten an iterator of iterables into a single combined sequence of all the elements in the iterables.
This is more or less equivalent to .flat_map
with an identity
function.
See also the flatten
function.
use itertools::Itertools; let data = vec![vec![1, 2, 3], vec![4, 5, 6]]; let flattened = data.iter().flatten(); itertools::assert_equal(flattened, &[1, 2, 3, 4, 5, 6]);
fn with_position(self) -> WithPosition<Self> where
Self: Sized,
Self: Sized,
Return an iterator adaptor that wraps each element in a Position
to
ease special-case handling of the first or last elements.
Iterator element type is
Position<Self::Item>
use itertools::{Itertools, Position}; let it = (0..4).with_position(); itertools::assert_equal(it, vec![Position::First(0), Position::Middle(1), Position::Middle(2), Position::Last(3)]); let it = (0..1).with_position(); itertools::assert_equal(it, vec![Position::Only(0)]);
fn positions<P>(self, predicate: P) -> Positions<Self, P> where
Self: Sized,
P: FnMut(Self::Item) -> bool,
Self: Sized,
P: FnMut(Self::Item) -> bool,
Return an iterator adaptor that yields the indices of all elements satisfying a predicate, counted from the start of the iterator.
Equivalent to iter.enumerate().filter(|(_, v)| predicate(v)).map(|(i, _)| i)
.
use itertools::Itertools; let data = vec![1, 2, 3, 3, 4, 6, 7, 9]; itertools::assert_equal(data.iter().positions(|v| v % 2 == 0), vec![1, 4, 5]); itertools::assert_equal(data.iter().positions(|v| v % 2 == 1).rev(), vec![7, 6, 3, 2, 0]);
fn update<F>(self, updater: F) -> Update<Self, F> where
Self: Sized,
F: FnMut(&mut Self::Item),
Self: Sized,
F: FnMut(&mut Self::Item),
Return an iterator adaptor that applies a mutating function to each element before yielding it.
use itertools::Itertools; let input = vec![vec![1], vec![3, 2, 1]]; let it = input.into_iter().update(|mut v| v.push(0)); itertools::assert_equal(it, vec![vec![1, 0], vec![3, 2, 1, 0]]);
fn next_tuple<T>(&mut self) -> Option<T> where
Self: Sized + Iterator<Item = T::Item>,
T: TupleCollect,
Self: Sized + Iterator<Item = T::Item>,
T: TupleCollect,
Advances the iterator and returns the next items grouped in a tuple of a specific size (up to 4).
If there are enough elements to be grouped in a tuple, then the tuple is
returned inside Some
, otherwise None
is returned.
use itertools::Itertools; let mut iter = 1..5; assert_eq!(Some((1, 2)), iter.next_tuple());
fn collect_tuple<T>(self) -> Option<T> where
Self: Sized + Iterator<Item = T::Item>,
T: TupleCollect,
Self: Sized + Iterator<Item = T::Item>,
T: TupleCollect,
Collects all items from the iterator into a tuple of a specific size (up to 4).
If the number of elements inside the iterator is exactly equal to
the tuple size, then the tuple is returned inside Some
, otherwise
None
is returned.
use itertools::Itertools; let iter = 1..3; if let Some((x, y)) = iter.collect_tuple() { assert_eq!((x, y), (1, 2)) } else { panic!("Expected two elements") }
fn find_position<P>(&mut self, pred: P) -> Option<(usize, Self::Item)> where
P: FnMut(&Self::Item) -> bool,
P: FnMut(&Self::Item) -> bool,
Find the position and value of the first element satisfying a predicate.
The iterator is not advanced past the first element found.
use itertools::Itertools; let text = "Hα"; assert_eq!(text.chars().find_position(|ch| ch.is_lowercase()), Some((1, 'α')));
fn all_equal(&mut self) -> bool where
Self::Item: PartialEq,
Self::Item: PartialEq,
Check whether all elements compare equal.
Empty iterators are considered to have equal elements:
use itertools::Itertools; let data = vec![1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 5]; assert!(!data.iter().all_equal()); assert!(data[0..3].iter().all_equal()); assert!(data[3..5].iter().all_equal()); assert!(data[5..8].iter().all_equal()); let data : Option<usize> = None; assert!(data.into_iter().all_equal());
fn dropping(self, n: usize) -> Self where
Self: Sized,
Self: Sized,
Consume the first n
elements from the iterator eagerly,
and return the same iterator again.
It works similarly to .skip( n
) except it is eager and
preserves the iterator type.
use itertools::Itertools; let mut iter = "αβγ".chars().dropping(2); itertools::assert_equal(iter, "γ".chars());
Fusing notes: if the iterator is exhausted by dropping,
the result of calling .next()
again depends on the iterator implementation.
fn dropping_back(self, n: usize) -> Self where
Self: Sized,
Self: DoubleEndedIterator,
Self: Sized,
Self: DoubleEndedIterator,
Consume the last n
elements from the iterator eagerly,
and return the same iterator again.
This is only possible on double ended iterators. n
may be
larger than the number of elements.
Note: This method is eager, dropping the back elements immediately and preserves the iterator type.
use itertools::Itertools; let init = vec![0, 3, 6, 9].into_iter().dropping_back(1); itertools::assert_equal(init, vec![0, 3, 6]);
fn foreach<F>(self, f: F) where
F: FnMut(Self::Item),
Self: Sized,
F: FnMut(Self::Item),
Self: Sized,
Run the closure f
eagerly on each element of the iterator.
Consumes the iterator until its end.
use std::sync::mpsc::channel; use itertools::Itertools; let (tx, rx) = channel(); // use .foreach() to apply a function to each value -- sending it (0..5).map(|x| x * 2 + 1).foreach(|x| { tx.send(x).unwrap(); } ); drop(tx); itertools::assert_equal(rx.iter(), vec![1, 3, 5, 7, 9]);
fn concat(self) -> Self::Item where
Self: Sized,
Self::Item: Extend<<Self::Item as IntoIterator>::Item> + IntoIterator + Default,
Self: Sized,
Self::Item: Extend<<Self::Item as IntoIterator>::Item> + IntoIterator + Default,
Combine all an iterator's elements into one element by using Extend
.
This combinator will extend the first item with each of the rest of the
items of the iterator. If the iterator is empty, the default value of
I::Item
is returned.
use itertools::Itertools; let input = vec![vec![1], vec![2, 3], vec![4, 5, 6]]; assert_eq!(input.into_iter().concat(), vec![1, 2, 3, 4, 5, 6]);
fn collect_vec(self) -> Vec<Self::Item> where
Self: Sized,
Self: Sized,
.collect_vec()
is simply a type specialization of .collect()
,
for convenience.
fn set_from<'a, A: 'a, J>(&mut self, from: J) -> usize where
Self: Iterator<Item = &'a mut A>,
J: IntoIterator<Item = A>,
Self: Iterator<Item = &'a mut A>,
J: IntoIterator<Item = A>,
Assign to each reference in self
from the from
iterator,
stopping at the shortest of the two iterators.
The from
iterator is queried for its next element before the self
iterator, and if either is exhausted the method is done.
Return the number of elements written.
use itertools::Itertools; let mut xs = [0; 4]; xs.iter_mut().set_from(1..); assert_eq!(xs, [1, 2, 3, 4]);
fn join(&mut self, sep: &str) -> String where
Self::Item: Display,
Self::Item: Display,
Combine all iterator elements into one String, seperated by sep
.
Use the Display
implementation of each element.
use itertools::Itertools; assert_eq!(["a", "b", "c"].iter().join(", "), "a, b, c"); assert_eq!([1, 2, 3].iter().join(", "), "1, 2, 3");
fn format(self, sep: &str) -> Format<Self> where
Self: Sized,
Self: Sized,
Format all iterator elements, separated by sep
.
All elements are formatted (any formatting trait)
with sep
inserted between each element.
Panics if the formatter helper is formatted more than once.
use itertools::Itertools; let data = [1.1, 2.71828, -3.]; assert_eq!( format!("{:.2}", data.iter().format(", ")), "1.10, 2.72, -3.00");
fn format_with<F>(self, sep: &str, format: F) -> FormatWith<Self, F> where
Self: Sized,
F: FnMut(Self::Item, &mut FnMut(&Display) -> Result) -> Result,
Self: Sized,
F: FnMut(Self::Item, &mut FnMut(&Display) -> Result) -> Result,
Format all iterator elements, separated by sep
.
This is a customizable version of .format()
.
The supplied closure format
is called once per iterator element,
with two arguments: the element and a callback that takes a
&Display
value, i.e. any reference to type that implements Display
.
Using &format_args!(...)
is the most versatile way to apply custom
element formatting. The callback can be called multiple times if needed.
Panics if the formatter helper is formatted more than once.
use itertools::Itertools; let data = [1.1, 2.71828, -3.]; let data_formatter = data.iter().format_with(", ", |elt, f| f(&format_args!("{:.2}", elt))); assert_eq!(format!("{}", data_formatter), "1.10, 2.72, -3.00"); // .format_with() is recursively composable let matrix = [[1., 2., 3.], [4., 5., 6.]]; let matrix_formatter = matrix.iter().format_with("\n", |row, f| { f(&row.iter().format_with(", ", |elt, g| g(&elt))) }); assert_eq!(format!("{}", matrix_formatter), "1, 2, 3\n4, 5, 6");
fn fold_results<A, E, B, F>(&mut self, start: B, f: F) -> Result<B, E> where
Self: Iterator<Item = Result<A, E>>,
F: FnMut(B, A) -> B,
Self: Iterator<Item = Result<A, E>>,
F: FnMut(B, A) -> B,
Fold Result
values from an iterator.
Only Ok
values are folded. If no error is encountered, the folded
value is returned inside Ok
. Otherwise, the operation terminates
and returns the first Err
value it encounters. No iterator elements are
consumed after the first error.
The first accumulator value is the start
parameter.
Each iteration passes the accumulator value and the next value inside Ok
to the fold function f
and its return value becomes the new accumulator value.
For example the sequence Ok(1), Ok(2), Ok(3) will result in a computation like this:
let mut accum = start; accum = f(accum, 1); accum = f(accum, 2); accum = f(accum, 3);
With a start
value of 0 and an addition as folding function,
this effetively results in ((0 + 1) + 2) + 3
use std::ops::Add; use itertools::Itertools; let values = [1, 2, -2, -1, 2, 1]; assert_eq!( values.iter() .map(Ok::<_, ()>) .fold_results(0, Add::add), Ok(3) ); assert!( values.iter() .map(|&x| if x >= 0 { Ok(x) } else { Err("Negative number") }) .fold_results(0, Add::add) .is_err() );
fn fold_options<A, B, F>(&mut self, start: B, f: F) -> Option<B> where
Self: Iterator<Item = Option<A>>,
F: FnMut(B, A) -> B,
Self: Iterator<Item = Option<A>>,
F: FnMut(B, A) -> B,
Fold Option
values from an iterator.
Only Some
values are folded. If no None
is encountered, the folded
value is returned inside Some
. Otherwise, the operation terminates
and returns None
. No iterator elements are consumed after the None
.
This is the Option
equivalent to fold_results
.
use std::ops::Add; use itertools::Itertools; let mut values = vec![Some(1), Some(2), Some(-2)].into_iter(); assert_eq!(values.fold_options(5, Add::add), Some(5 + 1 + 2 - 2)); let mut more_values = vec![Some(2), None, Some(0)].into_iter(); assert!(more_values.fold_options(0, Add::add).is_none()); assert_eq!(more_values.next().unwrap(), Some(0));
fn fold1<F>(self, f: F) -> Option<Self::Item> where
F: FnMut(Self::Item, Self::Item) -> Self::Item,
Self: Sized,
F: FnMut(Self::Item, Self::Item) -> Self::Item,
Self: Sized,
Accumulator of the elements in the iterator.
Like .fold()
, without a base case. If the iterator is
empty, return None
. With just one element, return it.
Otherwise elements are accumulated in sequence using the closure f
.
use itertools::Itertools; assert_eq!((0..10).fold1(|x, y| x + y).unwrap_or(0), 45); assert_eq!((0..0).fold1(|x, y| x * y), None);
fn tree_fold1<F>(self, f: F) -> Option<Self::Item> where
F: FnMut(Self::Item, Self::Item) -> Self::Item,
Self: Sized,
F: FnMut(Self::Item, Self::Item) -> Self::Item,
Self: Sized,
Accumulate the elements in the iterator in a tree-like manner.
You can think of it as, while there's more than one item, repeatedly combining adjacent items. It does so in bottom-up-merge-sort order, however, so that it needs only logarithmic stack space.
This produces a call tree like the following (where the calls under an item are done after reading that item):
1 2 3 4 5 6 7
│ │ │ │ │ │ │
└─f └─f └─f │
│ │ │ │
└───f └─f
│ │
└─────f
Which, for non-associative functions, will typically produce a different
result than the linear call tree used by fold1
:
1 2 3 4 5 6 7
│ │ │ │ │ │ │
└─f─f─f─f─f─f
If f
is associative, prefer the normal fold1
instead.
use itertools::Itertools; // The same tree as above let num_strings = (1..8).map(|x| x.to_string()); assert_eq!(num_strings.tree_fold1(|x, y| format!("f({}, {})", x, y)), Some(String::from("f(f(f(1, 2), f(3, 4)), f(f(5, 6), 7))"))); // Like fold1, an empty iterator produces None assert_eq!((0..0).tree_fold1(|x, y| x * y), None); // tree_fold1 matches fold1 for associative operations... assert_eq!((0..10).tree_fold1(|x, y| x + y), (0..10).fold1(|x, y| x + y)); // ...but not for non-associative ones assert!((0..10).tree_fold1(|x, y| x - y) != (0..10).fold1(|x, y| x - y));
fn fold_while<B, F>(&mut self, init: B, f: F) -> FoldWhile<B> where
Self: Sized,
F: FnMut(B, Self::Item) -> FoldWhile<B>,
Self: Sized,
F: FnMut(B, Self::Item) -> FoldWhile<B>,
An iterator method that applies a function, producing a single, final value.
fold_while()
is basically equivalent to fold()
but with additional support for
early exit via short-circuiting.
use itertools::Itertools; use itertools::FoldWhile::{Continue, Done}; let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; let mut result = 0; // for loop: for i in &numbers { if *i > 5 { break; } result = result + i; } // fold: let result2 = numbers.iter().fold(0, |acc, x| { if *x > 5 { acc } else { acc + x } }); // fold_while: let result3 = numbers.iter().fold_while(0, |acc, x| { if *x > 5 { Done(acc) } else { Continue(acc + x) } }).into_inner(); // they're the same assert_eq!(result, result2); assert_eq!(result2, result3);
The big difference between the computations of result2
and result3
is that while
fold()
called the provided closure for every item of the callee iterator,
fold_while()
actually stopped iterating as soon as it encountered Fold::Done(_)
.
fn sorted(self) -> Vec<Self::Item> where
Self: Sized,
Self::Item: Ord,
Self: Sized,
Self::Item: Ord,
Collect all iterator elements into a sorted vector in ascending order.
Note: This consumes the entire iterator, uses the
slice::sort_by()
method and returns the sorted vector.
use itertools::Itertools; // sort the letters of the text in ascending order let text = "bdacfe"; itertools::assert_equal(text.chars().sorted(), "abcdef".chars());
fn sorted_by<F>(self, cmp: F) -> Vec<Self::Item> where
Self: Sized,
F: FnMut(&Self::Item, &Self::Item) -> Ordering,
Self: Sized,
F: FnMut(&Self::Item, &Self::Item) -> Ordering,
Collect all iterator elements into a sorted vector.
Note: This consumes the entire iterator, uses the
slice::sort_by()
method and returns the sorted vector.
use itertools::Itertools; // sort people in descending order by age let people = vec![("Jane", 20), ("John", 18), ("Jill", 30), ("Jack", 27)]; let oldest_people_first = people .into_iter() .sorted_by(|a, b| Ord::cmp(&b.1, &a.1)) .into_iter() .map(|(person, _age)| person); itertools::assert_equal(oldest_people_first, vec!["Jill", "Jack", "Jane", "John"]);
fn sorted_by_key<K, F>(self, f: F) -> Vec<Self::Item> where
Self: Sized,
K: Ord,
F: FnMut(&Self::Item) -> K,
Self: Sized,
K: Ord,
F: FnMut(&Self::Item) -> K,
Collect all iterator elements into a sorted vector.
Note: This consumes the entire iterator, uses the
slice::sort_by_key()
method and returns the sorted vector.
use itertools::Itertools; // sort people in descending order by age let people = vec![("Jane", 20), ("John", 18), ("Jill", 30), ("Jack", 27)]; let oldest_people_first = people .into_iter() .sorted_by_key(|x| -x.1) .into_iter() .map(|(person, _age)| person); itertools::assert_equal(oldest_people_first, vec!["Jill", "Jack", "Jane", "John"]);
fn partition_map<A, B, F, L, R>(self, predicate: F) -> (A, B) where
Self: Sized,
F: Fn(Self::Item) -> Either<L, R>,
A: Default + Extend<L>,
B: Default + Extend<R>,
Self: Sized,
F: Fn(Self::Item) -> Either<L, R>,
A: Default + Extend<L>,
B: Default + Extend<R>,
Collect all iterator elements into one of two
partitions. Unlike Iterator::partition
, each partition may
have a distinct type.
use itertools::{Itertools, Either}; let successes_and_failures = vec![Ok(1), Err(false), Err(true), Ok(2)]; let (successes, failures): (Vec<_>, Vec<_>) = successes_and_failures .into_iter() .partition_map(|r| { match r { Ok(v) => Either::Left(v), Err(v) => Either::Right(v), } }); assert_eq!(successes, [1, 2]); assert_eq!(failures, [false, true]);
fn into_group_map<K, V>(self) -> HashMap<K, Vec<V>> where
Self: Iterator<Item = (K, V)> + Sized,
K: Hash + Eq,
Self: Iterator<Item = (K, V)> + Sized,
K: Hash + Eq,
Return a HashMap
of keys mapped to Vec
s of values. Keys and values
are taken from (Key, Value)
tuple pairs yielded by the input iterator.
use itertools::Itertools; let data = vec![(0, 10), (2, 12), (3, 13), (0, 20), (3, 33), (2, 42)]; let lookup = data.into_iter().into_group_map(); assert_eq!(lookup[&0], vec![10, 20]); assert_eq!(lookup.get(&1), None); assert_eq!(lookup[&2], vec![12, 42]); assert_eq!(lookup[&3], vec![13, 33]);
fn minmax(self) -> MinMaxResult<Self::Item> where
Self: Sized,
Self::Item: PartialOrd,
Self: Sized,
Self::Item: PartialOrd,
Return the minimum and maximum elements in the iterator.
The return type MinMaxResult
is an enum of three variants:
NoElements
if the iterator is empty.OneElement(x)
if the iterator has exactly one element.MinMax(x, y)
is returned otherwise, wherex <= y
. Two values are equal if and only if there is more than one element in the iterator and all elements are equal.
On an iterator of length n
, minmax
does 1.5 * n
comparisons,
and so is faster than calling min
and max
separately which does
2 * n
comparisons.
Examples
use itertools::Itertools; use itertools::MinMaxResult::{NoElements, OneElement, MinMax}; let a: [i32; 0] = []; assert_eq!(a.iter().minmax(), NoElements); let a = [1]; assert_eq!(a.iter().minmax(), OneElement(&1)); let a = [1, 2, 3, 4, 5]; assert_eq!(a.iter().minmax(), MinMax(&1, &5)); let a = [1, 1, 1, 1]; assert_eq!(a.iter().minmax(), MinMax(&1, &1));
The elements can be floats but no particular result is guaranteed if an element is NaN.
fn minmax_by_key<K, F>(self, key: F) -> MinMaxResult<Self::Item> where
Self: Sized,
K: PartialOrd,
F: FnMut(&Self::Item) -> K,
Self: Sized,
K: PartialOrd,
F: FnMut(&Self::Item) -> K,
Return the minimum and maximum element of an iterator, as determined by the specified function.
The return value is a variant of MinMaxResult
like for minmax()
.
For the minimum, the first minimal element is returned. For the maximum,
the last maximal element wins. This matches the behavior of the standard
Iterator::min()
and Iterator::max()
methods.
The keys can be floats but no particular result is guaranteed if a key is NaN.
fn minmax_by<F>(self, compare: F) -> MinMaxResult<Self::Item> where
Self: Sized,
F: FnMut(&Self::Item, &Self::Item) -> Ordering,
Self: Sized,
F: FnMut(&Self::Item, &Self::Item) -> Ordering,
Return the minimum and maximum element of an iterator, as determined by the specified comparison function.
The return value is a variant of MinMaxResult
like for minmax()
.
For the minimum, the first minimal element is returned. For the maximum,
the last maximal element wins. This matches the behavior of the standard
Iterator::min()
and Iterator::max()
methods.