pcb-stator-coil-generator/coil_generator-12.ipynb

682 lines
25 KiB
Text
Raw Normal View History

2022-10-10 18:45:58 +00:00
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"\n",
"# import matplotlib as plt\n",
"import matplotlib.pyplot as plt\n",
"import scipy\n",
"from skspatial.objects import LineSegment, Line, Vector\n",
"from enum import Enum\n",
"\n",
"Layer = Enum(\"Layer\", \"FRONT BACK\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"VIA_DIAM = 0.8\n",
"VIA_DRILL = 0.4\n",
"STATOR_HOLE_RADIUS = 5\n",
"TRACK_WIDTH = 0.127\n",
"TRACK_SPACING = 0.127\n",
"TURNS = 9\n",
"STATOR_RADIUS = 18\n",
"PIN_DIAM = 1.7\n",
"COIL_CENTER_RADIUS = 11.5\n",
"COIL_VIA_RADIUS = 12.5\n",
"# where to place the pins\n",
"CONNECTION_PINS_RADIUS = 16\n",
"USE_SPIRAL = False"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# get the point on an arc at the given angle\n",
"def get_arc_point(angle, radius):\n",
" return (\n",
" radius * np.cos(np.deg2rad(angle)),\n",
" radius * np.sin(np.deg2rad(angle)),\n",
" )\n",
"\n",
"\n",
"# draw an arc\n",
"def draw_arc(start_angle, end_angle, radius, step=10):\n",
" points = []\n",
" for angle in np.arange(start_angle, end_angle + step, step):\n",
" x = radius * np.cos(np.deg2rad(angle))\n",
" y = radius * np.sin(np.deg2rad(angle))\n",
" points.append((x, y))\n",
" return points\n",
"\n",
"\n",
"# roate the points by the required angle\n",
"def rotate(points, angle):\n",
" return [\n",
" [\n",
" x * np.cos(np.deg2rad(angle)) - y * np.sin(np.deg2rad(angle)),\n",
" x * np.sin(np.deg2rad(angle)) + y * np.cos(np.deg2rad(angle)),\n",
" ]\n",
" for x, y in points\n",
" ]\n",
"\n",
"\n",
"# move the points out to the distance at the requited angle\n",
"def translate(points, distance, angle):\n",
" return [\n",
" [\n",
" x + distance * np.cos(np.deg2rad(angle)),\n",
" y + distance * np.sin(np.deg2rad(angle)),\n",
" ]\n",
" for x, y in points\n",
" ]\n",
"\n",
"\n",
"# flip the y coordinate\n",
"def flip_y(points):\n",
" return [[x, -y] for x, y in points]\n",
"\n",
"\n",
"def flip_x(points):\n",
" return [[-x, y] for x, y in points]\n",
"\n",
"\n",
"def create_pad(radius, angle, name):\n",
" return {\n",
" \"x\": radius * np.cos(np.deg2rad(angle)),\n",
" \"y\": radius * np.sin(np.deg2rad(angle)),\n",
" \"name\": name,\n",
" }\n",
"\n",
"\n",
"def create_silk(point, text):\n",
" return {\n",
" \"x\": point[0],\n",
" \"y\": point[1],\n",
" \"text\": text,\n",
" }\n",
"\n",
"\n",
"def create_via(point):\n",
" return {\"x\": point[0], \"y\": point[1]}\n",
"\n",
"\n",
"def create_track(points):\n",
" return [{\"x\": x, \"y\": y} for x, y in points]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Arbitrary Coil Generation"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# templates must be simetric around the X axis and must include the center points on both size (e.g. (X1, 0).... (X2, 0) )\n",
"# template must also be convex\n",
"template = [\n",
" (-1.5, 0),\n",
" (-1.5, -0.1),\n",
" (1.9, -0.8),\n",
" (1.9, 0.0),\n",
" (1.9, 0.8),\n",
" (-1.5, 0.1),\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# plot the template shape wrapping around to the first point\n",
"df = pd.DataFrame(template + [template[0]], columns=[\"x\", \"y\"])\n",
"ax = df.plot.line(x=\"x\", y=\"y\", color=\"blue\")\n",
"ax.axis(\"equal\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def calculate_point(point, point1, point2, spacing, turn):\n",
" reference_vector = Vector([-100, 0])\n",
" angle = np.rad2deg(Vector(point).angle_between(reference_vector))\n",
" if point[1] > 0:\n",
" angle = 360 - angle\n",
" vector = Vector(point1) - Vector(point2)\n",
" normal = vector / np.linalg.norm(vector)\n",
" # rotate the vector 90 degrees\n",
" normal = np.array([-normal[1], normal[0]])\n",
" # move the point along the normal vector by the spacing\n",
" offset = spacing * (turn * 360 + angle) / 360\n",
" coil_point = point + normal * offset\n",
" return (coil_point[0], coil_point[1])\n",
"\n",
"\n",
"def get_points(template, turns, spacing):\n",
" coil_points = []\n",
" reference_vector = Vector([-100, 0])\n",
" template_index = 0\n",
" template_length = len(template)\n",
" for turn in range(turns * template_length):\n",
" point1 = template[template_index % template_length]\n",
" point2 = template[(template_index + 1) % template_length]\n",
"\n",
" # calculate the new positions of the points\n",
" coil_point1 = calculate_point(\n",
" point1, point1, point2, spacing, template_index // template_length\n",
" )\n",
" coil_point2 = calculate_point(\n",
" point2, point1, point2, spacing, (template_index + 1) // template_length\n",
" )\n",
" # adjust the previous point so that the previous line intersects with this new line\n",
" # this prevents any cutting of corners\n",
" if len(coil_points) >= 2:\n",
" # create a line from the previous two points\n",
" line1 = Line(\n",
" coil_points[len(coil_points) - 2],\n",
" np.array(coil_points[len(coil_points) - 1])\n",
" - np.array(coil_points[len(coil_points) - 2]),\n",
" )\n",
" # create a line from the two new points\n",
" line2 = Line(\n",
" np.array(coil_point1),\n",
" np.array(np.array(coil_point1) - np.array(coil_point2)),\n",
" )\n",
" # find the intersection of the two lines\n",
" try:\n",
" intersection = line1.intersect_line(line2)\n",
" # replace the previous point with the intersection\n",
" coil_points[len(coil_points) - 1] = intersection\n",
" # add the new point\n",
" coil_points.append(coil_point2)\n",
" except:\n",
" # the lines did not intersect so just add the points\n",
" coil_points.append(coil_point1)\n",
" coil_points.append(coil_point2)\n",
" else:\n",
" coil_points.append(coil_point1)\n",
" coil_points.append(coil_point2)\n",
"\n",
" template_index = template_index + 1\n",
" return coil_points\n",
"\n",
"\n",
"def optimize_points(points):\n",
" # follow the line and remove points that are in the same direction as the previous poin\n",
" # keep doing this until the direction changes significantly\n",
" # this is a very simple optimization that removes a lot of points\n",
" # it's not perfect but it's a good start\n",
" optimized_points = []\n",
" for i in range(len(points)):\n",
" if i == 0:\n",
" optimized_points.append(points[i])\n",
" else:\n",
" vector1 = np.array(points[i]) - np.array(points[i - 1])\n",
" vector2 = np.array(points[(i + 1) % len(points)]) - np.array(points[i])\n",
" length1 = np.linalg.norm(vector1)\n",
" length2 = np.linalg.norm(vector2)\n",
" if length1 > 0 and length2 > 0:\n",
" dot = np.dot(vector1, vector2) / (length1 * length2)\n",
" # clamp dot between -1 and 1\n",
" dot = max(-1, min(1, dot))\n",
" angle = np.arccos(dot)\n",
" if angle > np.deg2rad(5):\n",
" optimized_points.append(points[i])\n",
" print(\"Optimised from {} to {} points\".format(len(points), len(optimized_points)))\n",
" return optimized_points\n",
"\n",
"\n",
"def chaikin(points, iterations):\n",
" if iterations == 0:\n",
" return points\n",
" l = len(points)\n",
" smoothed = []\n",
" for i in range(l - 1):\n",
" x1, y1 = points[i]\n",
" x2, y2 = points[i + 1]\n",
" smoothed.append([0.95 * x1 + 0.05 * x2, 0.95 * y1 + 0.05 * y2])\n",
" smoothed.append([0.05 * x1 + 0.95 * x2, 0.05 * y1 + 0.95 * y2])\n",
" smoothed.append(points[l - 1])\n",
" return chaikin(smoothed, iterations - 1)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if not USE_SPIRAL:\n",
" template_f = []\n",
" for i in range(len(template)):\n",
" template_f.append(template[len(template) - i - len(template) // 2])\n",
" template_f = flip_x(template_f)\n",
" points_f = chaikin(\n",
" optimize_points(\n",
" flip_x(get_points(template_f, TURNS, TRACK_SPACING + TRACK_WIDTH))\n",
" ),\n",
" 2,\n",
" )\n",
" points_b = chaikin(\n",
" optimize_points(get_points(template, TURNS, TRACK_SPACING + TRACK_WIDTH)), 2\n",
" )\n",
"\n",
" points_f = [(COIL_VIA_RADIUS - COIL_CENTER_RADIUS, 0)] + points_f\n",
" points_b = [(COIL_VIA_RADIUS - COIL_CENTER_RADIUS, 0)] + points_b\n",
"\n",
" df = pd.DataFrame(points_f, columns=[\"x\", \"y\"])\n",
" ax = df.plot.line(x=\"x\", y=\"y\", color=\"blue\")\n",
" ax.axis(\"equal\")\n",
" df = pd.DataFrame(points_b, columns=[\"x\", \"y\"])\n",
" ax = df.plot.line(x=\"x\", y=\"y\", color=\"red\", ax=ax)\n",
"\n",
" print(\"Track points\", len(points_f), len(points_b))\n",
"else:\n",
" print(\"Using spiral\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Basic Spiral Coil Generation"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def get_spiral(turns, start_radius, thickness, layer=Layer.FRONT):\n",
" points = []\n",
" # create a starting point in the center\n",
" for angle in np.arange(0, turns * 360, 1):\n",
" radius = start_radius + thickness * angle / 360\n",
" if layer == Layer.BACK:\n",
" x = radius * np.cos(np.deg2rad(angle + 180))\n",
" y = radius * np.sin(np.deg2rad(angle + 180))\n",
" points.append((x, -y))\n",
" else:\n",
" x = radius * np.cos(np.deg2rad(angle))\n",
" y = radius * np.sin(np.deg2rad(angle))\n",
" points.append((x, y))\n",
" return points"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if USE_SPIRAL:\n",
" points_f = get_spiral(\n",
" TURNS, VIA_DIAM / 2 + TRACK_SPACING, TRACK_SPACING + TRACK_WIDTH, Layer.FRONT\n",
" )\n",
" points_b = get_spiral(\n",
" TURNS, VIA_DIAM / 2 + TRACK_SPACING, TRACK_SPACING + TRACK_WIDTH, Layer.BACK\n",
" )\n",
"\n",
" points_f = [(COIL_VIA_RADIUS - COIL_CENTER_RADIUS, 0)] + points_f\n",
" points_b = [(COIL_VIA_RADIUS - COIL_CENTER_RADIUS, 0)] + points_b\n",
" print(\"Track points\", len(points_f), len(points_b))\n",
"else:\n",
" print(\"Using template\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Generate PCB Layout"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# calculat the total length of the track to compute the resistance\n",
"total_length_front = 0\n",
"for i in range(len(points_f) - 1):\n",
" total_length_front += np.linalg.norm(\n",
" np.array(points_f[i + 1]) - np.array(points_f[i])\n",
" )\n",
"print(\"Total length front\", total_length_front)\n",
"\n",
"total_length_back = 0\n",
"for i in range(len(points_b) - 1):\n",
" total_length_back += np.linalg.norm(\n",
" np.array(points_b[i + 1]) - np.array(points_b[i])\n",
" )\n",
"print(\"Total length back\", total_length_back)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"vias = []\n",
"tracks_f = []\n",
"tracks_b = []\n",
"pads = []\n",
"silk = []\n",
"\n",
"# create the pads at CONNECTION_PINS radius - 2 for each of the coils, A, B and C\n",
"# angle_A = 0\n",
"# pads.append(create_pad(CONNECTION_PINS_RADIUS, angle_A - 30, \"A\"))\n",
"# pads.append(create_pad(CONNECTION_PINS_RADIUS, angle_A + 30, \"A\"))\n",
"\n",
"# angle_B = 120\n",
"# pads.append(create_pad(CONNECTION_PINS_RADIUS, angle_B - 30, \"B\"))\n",
"# pads.append(create_pad(CONNECTION_PINS_RADIUS, angle_B + 30, \"B\"))\n",
"\n",
"# angle_C = 240\n",
"# pads.append(create_pad(CONNECTION_PINS_RADIUS, angle_C - 30, \"C\"))\n",
"# pads.append(create_pad(CONNECTION_PINS_RADIUS, angle_C + 30, \"C\"))\n",
"\n",
"\n",
"# the main coils\n",
"coil_labels = [\"A\", \"B\", \"C\"]\n",
"coils_f = []\n",
"coils_b = []\n",
"for i in range(12):\n",
" angle = i * 360 / 12\n",
" if (i // 3) % 2 == 0:\n",
" coil_A_f = translate(rotate(points_f, angle), COIL_CENTER_RADIUS, angle)\n",
" coil_A_b = translate(rotate(points_b, angle), COIL_CENTER_RADIUS, angle)\n",
" else:\n",
" coil_A_f = translate(rotate(flip_y(points_f), angle), COIL_CENTER_RADIUS, angle)\n",
" coil_A_b = translate(rotate(flip_y(points_b), angle), COIL_CENTER_RADIUS, angle)\n",
" # keep track of the coils\n",
" coils_f.append(coil_A_f)\n",
" coils_b.append(coil_A_b)\n",
"\n",
" tracks_f.append(coil_A_f)\n",
" tracks_b.append(coil_A_b)\n",
" vias.append(create_via(get_arc_point(angle, COIL_VIA_RADIUS)))\n",
" silk.append(\n",
" create_silk(get_arc_point(angle, COIL_CENTER_RADIUS), coil_labels[i % 3])\n",
" )\n",
"\n",
"# raidus for connecting the bottoms of the coils together\n",
"connection_radius1 = STATOR_HOLE_RADIUS + TRACK_SPACING + TRACK_WIDTH\n",
"\n",
"# create tracks to link the A coils around the center\n",
"connection_via_radius_A = connection_radius1 + TRACK_SPACING + VIA_DIAM / 2\n",
"coil_A1_A2_inner = (\n",
" [get_arc_point(0, connection_via_radius_A)]\n",
" + draw_arc(0, 3 * 360 / 12, connection_radius1)\n",
" + [get_arc_point(3 * 360 / 12, connection_via_radius_A)]\n",
")\n",
"tracks_f.append(coil_A1_A2_inner)\n",
"coil_A3_A4_inner = (\n",
" [get_arc_point(6 * 360 / 12, connection_via_radius_A)]\n",
" + draw_arc(6 * 360 / 12, 9 * 360 / 12, connection_radius1)\n",
" + [get_arc_point(9 * 360 / 12, connection_via_radius_A)]\n",
")\n",
"tracks_f.append(coil_A3_A4_inner)\n",
"# connect up the bottoms of the A coils\n",
"coils_b[0].append(coil_A1_A2_inner[0])\n",
"coils_b[3].append(coil_A1_A2_inner[-1])\n",
"coils_b[6].append(coil_A3_A4_inner[0])\n",
"coils_b[9].append(coil_A3_A4_inner[-1])\n",
"# add the vias to stitch them together\n",
"vias.append(create_via(coil_A1_A2_inner[0]))\n",
"vias.append(create_via(coil_A1_A2_inner[-1]))\n",
"vias.append(create_via(coil_A3_A4_inner[0]))\n",
"vias.append(create_via(coil_A3_A4_inner[-1]))\n",
"\n",
"# create tracks to link the B coils around the center - this can all be done on the bottom layer\n",
"coil_B1_B2_inner = draw_arc(1 * 360 / 12, 4 * 360 / 12, connection_radius1)\n",
"tracks_b.append(coil_B1_B2_inner)\n",
"coil_B3_B4_inner = draw_arc(7 * 360 / 12, 10 * 360 / 12, connection_radius1)\n",
"tracks_b.append(coil_B3_B4_inner)\n",
"# connect up the bottoms of the A coils\n",
"coils_b[1].append(coil_B1_B2_inner[0])\n",
"coils_b[4].append(coil_B1_B2_inner[-1])\n",
"coils_b[7].append(coil_B3_B4_inner[0])\n",
"coils_b[10].append(coil_B3_B4_inner[-1])\n",
"\n",
"# create tracks to link the C coils around the center\n",
"connection_via_radius_C = connection_via_radius_A + TRACK_SPACING + VIA_DIAM / 2\n",
"coil_C1_C2_inner = draw_arc(2 * 360 / 12, 5 * 360 / 12, connection_via_radius_C)\n",
"tracks_f.append(coil_C1_C2_inner)\n",
"coil_C3_C4_inner = draw_arc(8 * 360 / 12, 11 * 360 / 12, connection_via_radius_C)\n",
"tracks_f.append(coil_C3_C4_inner)\n",
"# connect up the bottoms of the B coils\n",
"coils_b[2].append(coil_C1_C2_inner[0])\n",
"coils_b[5].append(coil_C1_C2_inner[-1])\n",
"coils_b[8].append(coil_C3_C4_inner[0])\n",
"coils_b[11].append(coil_C3_C4_inner[-1])\n",
"# add the vias to stitch them together\n",
"vias.append(create_via(coil_C1_C2_inner[0]))\n",
"vias.append(create_via(coil_C1_C2_inner[-1]))\n",
"vias.append(create_via(coil_C3_C4_inner[0]))\n",
"vias.append(create_via(coil_C3_C4_inner[-1]))\n",
"\n",
"# connect the last three coils together\n",
"common_connection_radius = STATOR_RADIUS - TRACK_SPACING - TRACK_WIDTH\n",
"tracks_f.append(draw_arc(9 * 360 / 12, 11 * 360 / 12, common_connection_radius))\n",
"coils_f[9].append(get_arc_point(9 * 360 / 12, common_connection_radius))\n",
"coils_f[10].append(get_arc_point(10 * 360 / 12, common_connection_radius))\n",
"coils_f[11].append(get_arc_point(11 * 360 / 12, common_connection_radius))\n",
"\n",
"# connect the outer A coils together\n",
"outer_connection_radius_A = STATOR_RADIUS - TRACK_SPACING - TRACK_WIDTH\n",
"tracks_f.append(draw_arc(3 * 360 / 12, 6 * 360 / 12, outer_connection_radius_A))\n",
"coils_f[3].append(get_arc_point(3 * 360 / 12, outer_connection_radius_A))\n",
"coils_f[6].append(get_arc_point(6 * 360 / 12, outer_connection_radius_A))\n",
"\n",
"# connect the outer B coils together\n",
"outer_connection_radius_B = outer_connection_radius_A - TRACK_SPACING - VIA_DIAM / 2\n",
"tracks_b.append(\n",
" [get_arc_point(4 * 360 / 12, outer_connection_radius_B)]\n",
" + draw_arc(4 * 360 / 12, 7 * 360 / 12, outer_connection_radius_A)\n",
" + [get_arc_point(7 * 360 / 12, outer_connection_radius_B)]\n",
")\n",
"coils_f[4].append(get_arc_point(4 * 360 / 12, outer_connection_radius_B))\n",
"coils_f[7].append(get_arc_point(7 * 360 / 12, outer_connection_radius_B))\n",
"vias.append(create_via(get_arc_point(4 * 360 / 12, outer_connection_radius_B)))\n",
"vias.append(create_via(get_arc_point(7 * 360 / 12, outer_connection_radius_B)))\n",
"\n",
"# connect the outer C coilds together\n",
"outer_connection_radius_C = outer_connection_radius_B - TRACK_SPACING - VIA_DIAM / 2\n",
"tracks_b.append(draw_arc(5 * 360 / 12, 8 * 360 / 12, outer_connection_radius_C))\n",
"coils_f[5].append(get_arc_point(5 * 360 / 12, outer_connection_radius_C))\n",
"coils_f[8].append(get_arc_point(8 * 360 / 12, outer_connection_radius_C))\n",
"vias.append(create_via(get_arc_point(5 * 360 / 12, outer_connection_radius_C)))\n",
"vias.append(create_via(get_arc_point(8 * 360 / 12, outer_connection_radius_C)))\n",
"\n",
"# create pads for the input\n",
"pin_radius = STATOR_RADIUS - TRACK_SPACING - PIN_DIAM / 2\n",
"pads.append(create_pad(pin_radius, 0, \"A\"))\n",
"pads.append(create_pad(pin_radius, 1 * 360 / 12, \"B\"))\n",
"pads.append(create_pad(pin_radius, 2 * 360 / 12, \"C\"))\n",
"\n",
"coils_f[0].append(get_arc_point(0, pin_radius))\n",
"coils_f[1].append(get_arc_point(1 * 360 / 12, pin_radius))\n",
"coils_f[2].append(get_arc_point(2 * 360 / 12, pin_radius))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# dump out the results to json\n",
"json_result = {\n",
" \"parameters\": {\n",
" \"trackWidth\": TRACK_WIDTH,\n",
" \"statorHoleRadius\": STATOR_HOLE_RADIUS,\n",
" \"statorRadius\": STATOR_RADIUS,\n",
" \"viaDiameter\": VIA_DIAM,\n",
" \"viaDrillDiameter\": VIA_DRILL,\n",
" },\n",
" \"vias\": vias,\n",
" \"pads\": pads,\n",
" \"silk\": silk,\n",
" \"tracks\": {\n",
" \"f\": [create_track(points) for points in tracks_f],\n",
" \"b\": [create_track(points) for points in tracks_b],\n",
" },\n",
"}\n",
"\n",
"import json\n",
"\n",
"json.dump(json_result, open(\"coil.json\", \"w\"))\n",
"\n",
"\n",
"# df = pd.DataFrame(coil_A_f, columns=[\"x\", \"y\"])\n",
"# ax = df.plot.line(x=\"x\", y=\"y\", label=\"Coil A\", color=\"blue\")\n",
"# ax.axis(\"equal\")\n",
"# df = pd.DataFrame(coil_A_b, columns=[\"x\", \"y\"])\n",
"# ax = df.plot.line(x=\"x\", y=\"y\", label=\"Coil B\", color=\"green\")\n",
"# ax.axis(\"equal\")\n",
"\n",
"\n",
"# plot the back tracks\n",
"ax = None\n",
"for track in json_result[\"tracks\"][\"b\"]:\n",
" df = pd.DataFrame(track, columns=[\"x\", \"y\"])\n",
" ax = df.plot.line(x=\"x\", y=\"y\", color=\"blue\", ax=ax)\n",
" ax.axis(\"equal\")\n",
"\n",
"# plot the front tracks\n",
"for track in json_result[\"tracks\"][\"f\"]:\n",
" df = pd.DataFrame(track, columns=[\"x\", \"y\"])\n",
" ax = df.plot.line(x=\"x\", y=\"y\", color=\"red\", ax=ax)\n",
" ax.axis(\"equal\")\n",
"\n",
"# hide the legend\n",
"ax.legend().set_visible(False)\n",
"# make the plot bigger\n",
"ax.figure.set_size_inches(10, 10)\n",
"\n",
"# plot the vias\n",
"for via in json_result[\"vias\"]:\n",
" ax.add_patch(\n",
" plt.Circle(\n",
" (via[\"x\"], via[\"y\"]),\n",
" radius=VIA_DIAM / 2,\n",
" fill=True,\n",
" color=\"black\",\n",
" )\n",
" )\n",
" ax.add_patch(\n",
" plt.Circle(\n",
" (via[\"x\"], via[\"y\"]),\n",
" radius=VIA_DRILL / 2,\n",
" fill=True,\n",
" color=\"white\",\n",
" )\n",
" )\n",
"\n",
"# plot the edge cuts\n",
"ax.add_patch(\n",
" plt.Circle(\n",
" (0, 0),\n",
" radius=STATOR_RADIUS,\n",
" fill=False,\n",
" color=\"yellow\",\n",
" )\n",
")\n",
"ax.add_patch(\n",
" plt.Circle(\n",
" (0, 0),\n",
" radius=STATOR_HOLE_RADIUS,\n",
" fill=False,\n",
" color=\"yellow\",\n",
" )\n",
")\n",
"\n",
"# plot the pads\n",
"for pad in json_result[\"pads\"]:\n",
" ax.add_patch(\n",
" plt.Circle(\n",
" (pad[\"x\"], pad[\"y\"]),\n",
" radius=1.7 / 2,\n",
" fill=True,\n",
" color=\"yellow\",\n",
" )\n",
" )\n",
" ax.add_patch(\n",
" plt.Circle(\n",
" (pad[\"x\"], pad[\"y\"]),\n",
" radius=1.0 / 2,\n",
" fill=True,\n",
" color=\"white\",\n",
" )\n",
" )\n",
"\n",
"# plot the silk\n",
"for silk in json_result[\"silk\"]:\n",
" ax.text(\n",
" silk[\"x\"],\n",
" silk[\"y\"],\n",
" silk[\"text\"],\n",
" horizontalalignment=\"center\",\n",
" verticalalignment=\"center\",\n",
" color=\"black\",\n",
" fontsize=50,\n",
" )"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.10.7 ('venv': venv)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.7"
},
"vscode": {
"interpreter": {
"hash": "fc384f9db26c31784edfba3761ba3d2c7b2f9b8a63e03a9eb0778fc35334efe1"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}